Spaces:
Build error
Build error
File size: 7,553 Bytes
d32adcb 8b300d9 6abad74 8b300d9 6abad74 f3e34b0 a03fe94 f3e34b0 a03fe94 f3e34b0 cce1831 a03fe94 cce1831 55e476e f3e34b0 a03fe94 f3e34b0 a03fe94 f3e34b0 a03fe94 f3e34b0 55e476e f3e34b0 0b63ed7 f3e34b0 12a8812 0b63ed7 f3e34b0 2bf4a87 12a8812 f3e34b0 a03fe94 f3e34b0 6abad74 f3e34b0 6abad74 a03fe94 6abad74 f3e34b0 5b4ede2 278032e f3e34b0 55e476e f3e34b0 5b4ede2 6abad74 5b4ede2 55e476e 5b4ede2 55e476e 0b63ed7 f3e34b0 a03fe94 5b4ede2 f3e34b0 55e476e f3e34b0 6abad74 f3e34b0 0b63ed7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
import numpy as np
import torch
from PIL import Image
import matplotlib.pyplot as plt
from fromage import models
from fromage import utils
import gradio as gr
import huggingface_hub
from share_btn import community_icon_html, loading_icon_html, share_js
import tempfile
css = """
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(repo_id='jykoh/fromage', filename='pretrained_ckpt.pth.tar')
args_path = huggingface_hub.hf_hub_download(repo_id='jykoh/fromage', filename='model_args.json')
model = models.load_fromage('./', args_path, ckpt_path)
def upload_image(state, image_input):
conversation = state[0]
chat_history = state[1]
conversation += [(f"![](/file={image_input.name})", "")]
input_image = Image.open(image_input.name).resize((224, 224)).convert('RGB')
return [conversation, chat_history, input_image], conversation
def reset():
return [[], [], None], []
def reset_last(state):
conversation = state[0][:-1]
chat_history = state[1][:-2]
input_image = state[2]
return [conversation, chat_history, input_image], conversation
def save_image_to_local(image: Image.Image):
# TODO(jykoh): Update so the url path is used, to prevent repeat saving.
filename = next(tempfile._get_candidate_names()) + '.png'
image.save(filename)
return filename
def generate_for_prompt(input_text, state, ret_scale_factor, max_nm_rets, num_words, temperature):
input_prompt = 'Q: ' + input_text + '\nA:'
conversation = state[0]
chat_history = state[1]
input_image = state[2]
print('Generating for', chat_history, flush=True)
# If an image was uploaded, prepend it to the model.
model_inputs = None
if input_image is not None:
model_inputs = chat_history + [input_image]
else:
model_inputs = chat_history
model_inputs.append(input_prompt)
top_p = 1.0
if temperature != 0.0:
top_p = 0.95
print('Running model.generate_for_images_and_texts with', model_inputs, flush=True)
model_outputs = model.generate_for_images_and_texts(model_inputs,
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
temperature=temperature, max_num_rets=max_nm_rets)
print('model_outputs', model_outputs, flush=True)
im_names = []
response = ''
text_outputs = []
for output in model_outputs:
if type(output) == str:
text_outputs.append(output)
response += output
elif type(output) == list:
for image in output:
filename = save_image_to_local(image)
response += f'<img src="/file={filename}">'
elif type(output) == Image.Image:
filename = save_image_to_local(output)
response += f'<img src="/file={filename}">'
# TODO(jykoh): Persist image inputs.
chat_history = model_inputs + [' '.join([s for s in model_outputs if type(s) == str]) + '\n']
conversation.append((input_text, response.replace('[RET]', ''))) # Remove [RET] from outputs.
# Set input image to None.
print('state', state, flush=True)
print('updated state', [conversation, chat_history, None], flush=True)
return [conversation, chat_history, None], conversation
with gr.Blocks(css=css) as demo:
gr.Markdown(
'### Grounding Language Models to Images for Multimodal Generation'
)
gr.HTML("""
For faster inference without waiting in queue, you may duplicate the space and use your own GPU. <a href="https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation?duplicate=true"><img style="margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
""")
chatbot = gr.Chatbot(elem_id="chatbot")
gr_state = gr.State([[], [], None]) # chat_history, input_image
with gr.Group(elem_id="share-btn-container", visible=False):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
with gr.Row():
with gr.Column(scale=0.3, min_width=100):
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.0, step=0.1, interactive=True, label="Multiplier for returning images (higher means more frequent)")
max_ret_images = gr.Number(minimum=0, maximum=3, value=1, precision=1, interactive=True, label="Max images to return")
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32, step=1, interactive=True, label="Max # of words returned")
gr_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, interactive=True, label="Temperature")
with gr.Column(scale=0.7, min_width=400):
image_btn = gr.UploadButton("🖼️ Image Input", file_types=["image"])
text_input = gr.Textbox(label="Chat Input", lines=1, placeholder="Upload an image above [optional]. Then enter a text prompt, and press enter!")
with gr.Row():
with gr.Column(scale=0.33):
submit_btn = gr.Button("Submit", interactive=True, variant="primary")
with gr.Column(scale=0.33):
clear_last_btn = gr.Button("Clear Last Round")
with gr.Column(scale=0.33):
clear_btn = gr.Button("Clear All")
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor, max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot])
text_input.submit(lambda: "", None, text_input) # Reset chatbox.
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor, max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot])
submit_btn.click(lambda: "", None, text_input) # Reset chatbox.
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
clear_btn.click(reset, [], [gr_state, chatbot])
share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=1, api_open=False, max_size=16)
demo.launch(debug=True, server_name="0.0.0.0") |