|
import librosa |
|
from transformers import Wav2Vec2ForCTC, AutoProcessor |
|
import torch |
|
|
|
ASR_SAMPLING_RATE = 16_000 |
|
|
|
|
|
MODEL_ID = "facebook/mms-1b-all" |
|
|
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) |
|
|
|
|
|
def transcribe(microphone, file_upload, lang): |
|
|
|
warn_output = "" |
|
if (microphone is not None) and (file_upload is not None): |
|
warn_output = ( |
|
"WARNING: You've uploaded an audio file and used the microphone. " |
|
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" |
|
) |
|
elif (microphone is None) and (file_upload is None): |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
audio_fp = microphone if microphone is not None else file_upload |
|
audio_samples = librosa.load(audio_fp, sr=ASR_SAMPLING_RATE, mono=True)[0] |
|
|
|
lang_code = lang.split(":")[0] |
|
processor.tokenizer.set_target_lang(lang_code) |
|
model.load_adapter(lang_code) |
|
|
|
inputs = processor( |
|
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt" |
|
) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs).logits |
|
|
|
ids = torch.argmax(outputs, dim=-1)[0] |
|
transcription = processor.decode(ids) |
|
return warn_output + transcription |
|
|