MMS / app.py
k1ngtai's picture
Update app.py
5361747
raw
history blame
4.63 kB
import gradio as gr
import librosa
from asr import transcribe, ASR_EXAMPLES, ASR_LANGUAGES, ASR_NOTE
from tts import synthesize, TTS_EXAMPLES, TTS_LANGUAGES
from lid import identify, LID_EXAMPLES
demo = gr.Blocks()
mms_select_source_trans = gr.Radio(
["Record from Mic", "Upload audio"],
label="Audio input",
value="Record from Mic",
)
mms_mic_source_trans = gr.Audio(source="microphone", type="filepath", label="Use mic")
mms_upload_source_trans = gr.Audio(
source="upload", type="filepath", label="Upload file", visible=False
)
mms_transcribe = gr.Interface(
fn=transcribe,
inputs=[
mms_select_source_trans,
mms_mic_source_trans,
mms_upload_source_trans,
gr.Dropdown(
[f"{k} ({v})" for k, v in ASR_LANGUAGES.items()],
label="Language",
value="eng English",
),
# gr.Checkbox(label="Use Language Model (if available)", default=True),
],
outputs="text",
examples=ASR_EXAMPLES,
title="Speech-to-text",
description=(
"Transcribe audio from a microphone or input file in your desired language."
),
article=ASR_NOTE,
allow_flagging="never",
)
mms_synthesize = gr.Interface(
fn=synthesize,
inputs=[
gr.Text(label="Input text"),
gr.Dropdown(
[f"{k} ({v})" for k, v in TTS_LANGUAGES.items()],
label="Language",
value="eng English",
),
gr.Slider(minimum=0.1, maximum=4.0, value=1.0, step=0.1, label="Speed"),
],
outputs=[
gr.Audio(label="Generated Audio", type="numpy"),
gr.Text(label="Filtered text after removing OOVs"),
],
examples=TTS_EXAMPLES,
title="Text-to-speech",
description=("Generate audio in your desired language from input text."),
allow_flagging="never",
)
mms_select_source_iden = gr.Radio(
["Record from Mic", "Upload audio"],
label="Audio input",
value="Record from Mic",
)
mms_mic_source_iden = gr.Audio(source="microphone", type="filepath", label="Use mic")
mms_upload_source_iden = gr.Audio(
source="upload", type="filepath", label="Upload file", visible=False
)
mms_identify = gr.Interface(
fn=identify,
inputs=[
mms_select_source_iden,
mms_mic_source_iden,
mms_upload_source_iden,
],
outputs=gr.Label(num_top_classes=10),
examples=LID_EXAMPLES,
title="Language Identification",
description=("Identity the language of input audio."),
allow_flagging="never",
)
tabbed_interface = gr.TabbedInterface(
[mms_transcribe, mms_synthesize, mms_identify],
["Speech-to-text", "Text-to-speech", "Language Identification"],
)
with gr.Blocks() as demo:
gr.Markdown(
"<p align='center' style='font-size: 20px;'>MMS: Scaling Speech Technology to 1000+ languages demo. See our <a href='https://ai.facebook.com/blog/multilingual-model-speech-recognition/'>blog post</a> and <a href='https://arxiv.org/abs/2305.13516'>paper</a>.</p>"
)
gr.HTML(
"""<center>Click on the appropriate tab to explore Speech-to-text (ASR), Text-to-speech (TTS) and Language identification (LID) demos. </center>"""
)
gr.HTML(
"""<center><a href="https://huggingface.co/spaces/facebook/MMS?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"><img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for more control and no queue.</center>"""
)
tabbed_interface.render()
mms_select_source_trans.change(
lambda x: [
gr.update(visible=True if x == "Record from Mic" else False),
gr.update(visible=True if x == "Upload audio" else False),
],
inputs=[mms_select_source_trans],
outputs=[mms_mic_source_trans, mms_upload_source_trans],
queue=False,
)
mms_select_source_iden.change(
lambda x: [
gr.update(visible=True if x == "Record from Mic" else False),
gr.update(visible=True if x == "Upload audio" else False),
],
inputs=[mms_select_source_iden],
outputs=[mms_mic_source_iden, mms_upload_source_iden],
queue=False,
)
gr.HTML(
"""
<div class="footer" style="text-align:center">
<p>
Model by <a href="https://ai.facebook.com" style="text-decoration: underline;" target="_blank">Meta AI</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
demo.queue(concurrency_count=3)
demo.launch()