csukuangfj
commited on
Commit
Β·
3330d20
1
Parent(s):
3761eac
first commit
Browse files
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
2 |
-
title: Automatic Speech Recognition
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: Automatic Speech Recognition
|
3 |
+
emoji: π
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
python_version: 3.8.9
|
8 |
+
sdk_version: 3.0.26
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
#
|
3 |
+
# Copyright 2022-2023 Xiaomi Corp. (authors: Fangjun Kuang)
|
4 |
+
#
|
5 |
+
# See LICENSE for clarification regarding multiple authors
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
|
19 |
+
# References:
|
20 |
+
# https://gradio.app/docs/#dropdown
|
21 |
+
|
22 |
+
import logging
|
23 |
+
import os
|
24 |
+
import tempfile
|
25 |
+
import time
|
26 |
+
from datetime import datetime
|
27 |
+
|
28 |
+
import gradio as gr
|
29 |
+
import soundfile as sf
|
30 |
+
import urllib.request
|
31 |
+
|
32 |
+
|
33 |
+
from examples import examples
|
34 |
+
from model import decode, get_pretrained_model, whisper_models
|
35 |
+
|
36 |
+
languages = list(language_to_models.keys())
|
37 |
+
|
38 |
+
|
39 |
+
def convert_to_wav(in_filename: str) -> str:
|
40 |
+
"""Convert the input audio file to a wave file"""
|
41 |
+
out_filename = in_filename + ".wav"
|
42 |
+
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
|
43 |
+
|
44 |
+
_ = os.system(
|
45 |
+
f"ffmpeg -hide_banner -i '{in_filename}' -ar 16000 -ac 1 '{out_filename}'"
|
46 |
+
)
|
47 |
+
|
48 |
+
return out_filename
|
49 |
+
|
50 |
+
|
51 |
+
def build_html_output(s: str, style: str = "result_item_success"):
|
52 |
+
return f"""
|
53 |
+
<div class='result'>
|
54 |
+
<div class='result_item {style}'>
|
55 |
+
{s}
|
56 |
+
</div>
|
57 |
+
</div>
|
58 |
+
"""
|
59 |
+
|
60 |
+
|
61 |
+
def process_url(
|
62 |
+
repo_id: str,
|
63 |
+
url: str,
|
64 |
+
):
|
65 |
+
logging.info(f"Processing URL: {url}")
|
66 |
+
with tempfile.NamedTemporaryFile() as f:
|
67 |
+
try:
|
68 |
+
urllib.request.urlretrieve(url, f.name)
|
69 |
+
|
70 |
+
return process(
|
71 |
+
in_filename=f.name,
|
72 |
+
repo_id=repo_id,
|
73 |
+
)
|
74 |
+
except Exception as e:
|
75 |
+
logging.info(str(e))
|
76 |
+
return "", build_html_output(str(e), "result_item_error")
|
77 |
+
|
78 |
+
|
79 |
+
def process_uploaded_file(
|
80 |
+
repo_id: str,
|
81 |
+
in_filename: str,
|
82 |
+
):
|
83 |
+
if in_filename is None or in_filename == "":
|
84 |
+
return "", build_html_output(
|
85 |
+
"Please first upload a file and then click "
|
86 |
+
'the button "submit for recognition"',
|
87 |
+
"result_item_error",
|
88 |
+
)
|
89 |
+
|
90 |
+
logging.info(f"Processing uploaded file: {in_filename}")
|
91 |
+
try:
|
92 |
+
return process(
|
93 |
+
in_filename=in_filename,
|
94 |
+
repo_id=repo_id,
|
95 |
+
)
|
96 |
+
except Exception as e:
|
97 |
+
logging.info(str(e))
|
98 |
+
return "", build_html_output(str(e), "result_item_error")
|
99 |
+
|
100 |
+
|
101 |
+
def process_microphone(
|
102 |
+
repo_id: str,
|
103 |
+
in_filename: str,
|
104 |
+
):
|
105 |
+
if in_filename is None or in_filename == "":
|
106 |
+
return "", build_html_output(
|
107 |
+
"Please first click 'Record from microphone', speak, "
|
108 |
+
"click 'Stop recording', and then "
|
109 |
+
"click the button 'submit for recognition'",
|
110 |
+
"result_item_error",
|
111 |
+
)
|
112 |
+
|
113 |
+
logging.info(f"Processing microphone: {in_filename}")
|
114 |
+
try:
|
115 |
+
return process(
|
116 |
+
in_filename=in_filename,
|
117 |
+
repo_id=repo_id,
|
118 |
+
)
|
119 |
+
except Exception as e:
|
120 |
+
logging.info(str(e))
|
121 |
+
return "", build_html_output(str(e), "result_item_error")
|
122 |
+
|
123 |
+
|
124 |
+
def process(
|
125 |
+
repo_id: str,
|
126 |
+
in_filename: str,
|
127 |
+
):
|
128 |
+
logging.info(f"repo_id: {repo_id}")
|
129 |
+
logging.info(f"in_filename: {in_filename}")
|
130 |
+
|
131 |
+
filename = convert_to_wav(in_filename)
|
132 |
+
|
133 |
+
now = datetime.now()
|
134 |
+
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
135 |
+
logging.info(f"Started at {date_time}")
|
136 |
+
|
137 |
+
start = time.time()
|
138 |
+
|
139 |
+
recognizer = get_pretrained_model(
|
140 |
+
repo_id,
|
141 |
+
)
|
142 |
+
|
143 |
+
text = decode(recognizer, filename)
|
144 |
+
|
145 |
+
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
|
146 |
+
end = time.time()
|
147 |
+
|
148 |
+
info = torchaudio.info(filename)
|
149 |
+
duration = info.duration
|
150 |
+
|
151 |
+
elapsed = end - start
|
152 |
+
rtf = elapsed / duration
|
153 |
+
|
154 |
+
logging.info(f"Finished at {date_time} s. Elapsed: {elapsed: .3f} s")
|
155 |
+
|
156 |
+
info = f"""
|
157 |
+
Wave duration : {duration: .3f} s <br/>
|
158 |
+
Processing time: {elapsed: .3f} s <br/>
|
159 |
+
RTF: {elapsed: .3f}/{duration: .3f} = {rtf:.3f} <br/>
|
160 |
+
"""
|
161 |
+
if rtf > 1:
|
162 |
+
info += (
|
163 |
+
"<br/>We are loading the model for the first run. "
|
164 |
+
"Please run again to measure the real RTF.<br/>"
|
165 |
+
)
|
166 |
+
|
167 |
+
logging.info(info)
|
168 |
+
logging.info(f"\nrepo_id: {repo_id}\nhyp: {text}")
|
169 |
+
|
170 |
+
return text, build_html_output(info)
|
171 |
+
|
172 |
+
|
173 |
+
title = "# Automatic Speech Recognition with Next-gen Kaldi using Whisper models"
|
174 |
+
description = """
|
175 |
+
This space shows how to do automatic speech recognition with Next-gen Kaldi
|
176 |
+
using Whisper models.
|
177 |
+
|
178 |
+
It is running on CPU within a docker container provided by Hugging Face.
|
179 |
+
|
180 |
+
See more information by visiting the following links:
|
181 |
+
|
182 |
+
- <https://github.com/k2-fsa/sherpa-onnx>
|
183 |
+
|
184 |
+
If you want to deploy it locally, please see
|
185 |
+
<https://k2-fsa.github.io/sherpa/>
|
186 |
+
"""
|
187 |
+
|
188 |
+
# css style is copied from
|
189 |
+
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
|
190 |
+
css = """
|
191 |
+
.result {display:flex;flex-direction:column}
|
192 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
|
193 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
194 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
195 |
+
"""
|
196 |
+
|
197 |
+
|
198 |
+
def update_model_dropdown(language: str):
|
199 |
+
if language in language_to_models:
|
200 |
+
choices = language_to_models[language]
|
201 |
+
return gr.Dropdown.update(choices=choices, value=choices[0])
|
202 |
+
|
203 |
+
raise ValueError(f"Unsupported language: {language}")
|
204 |
+
|
205 |
+
|
206 |
+
demo = gr.Blocks(css=css)
|
207 |
+
|
208 |
+
|
209 |
+
with demo:
|
210 |
+
gr.Markdown(title)
|
211 |
+
language_choices = list(language_to_models.keys())
|
212 |
+
model_choices = list(whisper_models.keys())
|
213 |
+
|
214 |
+
model_dropdown = gr.Dropdown(
|
215 |
+
choices=model_choices,
|
216 |
+
label="Select a model",
|
217 |
+
value=model_choices[0],
|
218 |
+
)
|
219 |
+
|
220 |
+
with gr.Tabs():
|
221 |
+
with gr.TabItem("Upload from disk"):
|
222 |
+
uploaded_file = gr.Audio(
|
223 |
+
source="upload", # Choose between "microphone", "upload"
|
224 |
+
type="filepath",
|
225 |
+
optional=False,
|
226 |
+
label="Upload from disk",
|
227 |
+
)
|
228 |
+
upload_button = gr.Button("Submit for recognition")
|
229 |
+
uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
|
230 |
+
uploaded_html_info = gr.HTML(label="Info")
|
231 |
+
|
232 |
+
with gr.TabItem("Record from microphone"):
|
233 |
+
microphone = gr.Audio(
|
234 |
+
source="microphone", # Choose between "microphone", "upload"
|
235 |
+
type="filepath",
|
236 |
+
optional=False,
|
237 |
+
label="Record from microphone",
|
238 |
+
)
|
239 |
+
|
240 |
+
record_button = gr.Button("Submit for recognition")
|
241 |
+
recorded_output = gr.Textbox(label="Recognized speech from recordings")
|
242 |
+
recorded_html_info = gr.HTML(label="Info")
|
243 |
+
|
244 |
+
with gr.TabItem("From URL"):
|
245 |
+
url_textbox = gr.Textbox(
|
246 |
+
max_lines=1,
|
247 |
+
placeholder="URL to an audio file",
|
248 |
+
label="URL",
|
249 |
+
interactive=True,
|
250 |
+
)
|
251 |
+
|
252 |
+
url_button = gr.Button("Submit for recognition")
|
253 |
+
url_output = gr.Textbox(label="Recognized speech from URL")
|
254 |
+
url_html_info = gr.HTML(label="Info")
|
255 |
+
|
256 |
+
upload_button.click(
|
257 |
+
process_uploaded_file,
|
258 |
+
inputs=[
|
259 |
+
model_dropdown,
|
260 |
+
uploaded_file,
|
261 |
+
],
|
262 |
+
outputs=[uploaded_output, uploaded_html_info],
|
263 |
+
)
|
264 |
+
|
265 |
+
record_button.click(
|
266 |
+
process_microphone,
|
267 |
+
inputs=[
|
268 |
+
model_dropdown,
|
269 |
+
microphone,
|
270 |
+
],
|
271 |
+
outputs=[recorded_output, recorded_html_info],
|
272 |
+
)
|
273 |
+
|
274 |
+
url_button.click(
|
275 |
+
process_url,
|
276 |
+
inputs=[
|
277 |
+
model_dropdown,
|
278 |
+
url_textbox,
|
279 |
+
],
|
280 |
+
outputs=[url_output, url_html_info],
|
281 |
+
)
|
282 |
+
|
283 |
+
gr.Markdown(description)
|
284 |
+
|
285 |
+
if __name__ == "__main__":
|
286 |
+
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
|
287 |
+
|
288 |
+
logging.basicConfig(format=formatter, level=logging.INFO)
|
289 |
+
|
290 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang)
|
2 |
+
#
|
3 |
+
# See LICENSE for clarification regarding multiple authors
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from functools import lru_cache
|
18 |
+
|
19 |
+
from huggingface_hub import hf_hub_download
|
20 |
+
|
21 |
+
|
22 |
+
import sherpa_onnx
|
23 |
+
import numpy as np
|
24 |
+
from typing import Tuple
|
25 |
+
import wave
|
26 |
+
|
27 |
+
sample_rate = 16000
|
28 |
+
|
29 |
+
|
30 |
+
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
|
31 |
+
"""
|
32 |
+
Args:
|
33 |
+
wave_filename:
|
34 |
+
Path to a wave file. It should be single channel and each sample should
|
35 |
+
be 16-bit. Its sample rate does not need to be 16kHz.
|
36 |
+
Returns:
|
37 |
+
Return a tuple containing:
|
38 |
+
- A 1-D array of dtype np.float32 containing the samples, which are
|
39 |
+
normalized to the range [-1, 1].
|
40 |
+
- sample rate of the wave file
|
41 |
+
"""
|
42 |
+
|
43 |
+
with wave.open(wave_filename) as f:
|
44 |
+
assert f.getnchannels() == 1, f.getnchannels()
|
45 |
+
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
|
46 |
+
num_samples = f.getnframes()
|
47 |
+
samples = f.readframes(num_samples)
|
48 |
+
samples_int16 = np.frombuffer(samples, dtype=np.int16)
|
49 |
+
samples_float32 = samples_int16.astype(np.float32)
|
50 |
+
|
51 |
+
samples_float32 = samples_float32 / 32768
|
52 |
+
return samples_float32, f.getframerate()
|
53 |
+
|
54 |
+
|
55 |
+
def decode(
|
56 |
+
recognizer: sherpa_onnx.OfflineRecognizer,
|
57 |
+
filename: str,
|
58 |
+
) -> str:
|
59 |
+
s = recognizer.create_stream()
|
60 |
+
samples, sample_rate = read_wave(filename)
|
61 |
+
s.accept_waveform(sample_rate, samples)
|
62 |
+
recognizer.decode_stream(s)
|
63 |
+
|
64 |
+
return s.result.text.lower()
|
65 |
+
|
66 |
+
|
67 |
+
def _get_nn_model_filename(
|
68 |
+
repo_id: str,
|
69 |
+
filename: str,
|
70 |
+
subfolder: str = ".",
|
71 |
+
) -> str:
|
72 |
+
nn_model_filename = hf_hub_download(
|
73 |
+
repo_id=repo_id,
|
74 |
+
filename=filename,
|
75 |
+
subfolder=subfolder,
|
76 |
+
)
|
77 |
+
return nn_model_filename
|
78 |
+
|
79 |
+
|
80 |
+
def _get_token_filename(
|
81 |
+
repo_id: str,
|
82 |
+
filename: str,
|
83 |
+
subfolder: str = ".",
|
84 |
+
) -> str:
|
85 |
+
token_filename = hf_hub_download(
|
86 |
+
repo_id=repo_id,
|
87 |
+
filename=filename,
|
88 |
+
subfolder=subfolder,
|
89 |
+
)
|
90 |
+
return token_filename
|
91 |
+
|
92 |
+
|
93 |
+
@lru_cache(maxsize=8)
|
94 |
+
def get_pretrained_model(name: str) -> sherpa_onnx.OfflineRecognizer:
|
95 |
+
assert name in ("tiny.en", "base.en", "small.en", "tiny", "base", "small"), name
|
96 |
+
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
|
97 |
+
encoder = _get_nn_model_filename(
|
98 |
+
repo_id=full_repo_id,
|
99 |
+
filename=f"{name}-encoder.int8.ort",
|
100 |
+
)
|
101 |
+
|
102 |
+
decoder = _get_nn_model_filename(
|
103 |
+
repo_id=full_repo_id,
|
104 |
+
filename=f"{name}-decoder.int8.ort",
|
105 |
+
)
|
106 |
+
|
107 |
+
tokens = _get_token_filename(repo_id=full_repo_id, filename=f"{name}-tokens.txt")
|
108 |
+
|
109 |
+
recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
|
110 |
+
encoder=encoder,
|
111 |
+
decoder=decoder,
|
112 |
+
tokens=tokens,
|
113 |
+
num_threads=2,
|
114 |
+
)
|
115 |
+
|
116 |
+
return recognizer
|
117 |
+
|
118 |
+
|
119 |
+
whisper_models = {
|
120 |
+
"tiny.en": get_pretrained_model,
|
121 |
+
"base.en": get_pretrained_model,
|
122 |
+
"small.en": get_pretrained_model,
|
123 |
+
"tiny": get_pretrained_model,
|
124 |
+
"base": get_pretrained_model,
|
125 |
+
"small": get_pretrained_model,
|
126 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
soundfile
|
2 |
+
sentencepiece>=0.1.96
|
3 |
+
numpy
|
4 |
+
|
5 |
+
huggingface_hub
|
6 |
+
sherpa-onnx>=1.7.7
|