File size: 3,477 Bytes
9e8a5d8 024d916 9e8a5d8 da1064b 9e8a5d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# Copyright 2022-2024 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import wave
from functools import lru_cache
from typing import Tuple
import numpy as np
import sherpa_onnx
print(dir(sherpa_onnx))
print(sherpa_onnx.__version__)
from huggingface_hub import hf_hub_download
from iso639 import Lang
sample_rate = 16000
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
"""
Args:
wave_filename:
Path to a wave file. It should be single channel and each sample should
be 16-bit. Its sample rate does not need to be 16kHz.
Returns:
Return a tuple containing:
- A 1-D array of dtype np.float32 containing the samples, which are
normalized to the range [-1, 1].
- sample rate of the wave file
"""
with wave.open(wave_filename) as f:
assert f.getnchannels() == 1, f.getnchannels()
assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes
num_samples = f.getnframes()
samples = f.readframes(num_samples)
samples_int16 = np.frombuffer(samples, dtype=np.int16)
samples_float32 = samples_int16.astype(np.float32)
samples_float32 = samples_float32 / 32768
return samples_float32, f.getframerate()
def decode(
slid: sherpa_onnx.SpokenLanguageIdentification,
filename: str,
) -> str:
s = slid.create_stream()
samples, sample_rate = read_wave(filename)
s.accept_waveform(sample_rate, samples)
lang = slid.compute(s)
if lang == "":
return "Unknown"
try:
return Lang(lang).name
except:
return lang
def _get_nn_model_filename(
repo_id: str,
filename: str,
subfolder: str = ".",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
@lru_cache(maxsize=8)
def get_pretrained_model(name: str) -> sherpa_onnx.SpokenLanguageIdentification:
assert name in (
"tiny",
"base",
"small",
"medium",
), name
full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
encoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"{name}-encoder.int8.onnx",
)
decoder = _get_nn_model_filename(
repo_id=full_repo_id,
filename=f"{name}-decoder.int8.onnx",
)
config = sherpa_onnx.SpokenLanguageIdentificationConfig(
whisper=sherpa_onnx.SpokenLanguageIdentificationWhisperConfig(
encoder=encoder,
decoder=decoder,
),
num_threads=2,
debug=1,
provider="cpu",
)
return sherpa_onnx.SpokenLanguageIdentification(config)
whisper_models = {
"tiny": get_pretrained_model,
"base": get_pretrained_model,
"small": get_pretrained_model,
"medium": get_pretrained_model,
}
|