File size: 3,483 Bytes
9e8a5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
024d916
 
 
9e8a5d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright      2022-2024  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import wave
from functools import lru_cache
from typing import Tuple

import numpy as np
import sherpa_onnx

print(dir(sherpa_onnx))
print(sherpa_onnx.__version__)
from huggingface_hub import hf_hub_download
from iso639 import Lang

sample_rate = 16000


def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
    """
    Args:
      wave_filename:
        Path to a wave file. It should be single channel and each sample should
        be 16-bit. Its sample rate does not need to be 16kHz.
    Returns:
      Return a tuple containing:
       - A 1-D array of dtype np.float32 containing the samples, which are
       normalized to the range [-1, 1].
       - sample rate of the wave file
    """

    with wave.open(wave_filename) as f:
        assert f.getnchannels() == 1, f.getnchannels()
        assert f.getsampwidth() == 2, f.getsampwidth()  # it is in bytes
        num_samples = f.getnframes()
        samples = f.readframes(num_samples)
        samples_int16 = np.frombuffer(samples, dtype=np.int16)
        samples_float32 = samples_int16.astype(np.float32)

        samples_float32 = samples_float32 / 32768
        return samples_float32, f.getframerate()


def decode(
    slid: sherpa_onnx.SpokenLanguageIdentification,
    filename: str,
) -> str:
    s = recognizer.create_stream()
    samples, sample_rate = read_wave(filename)
    s.accept_waveform(sample_rate, samples)
    lang = slid.compute(s)
    if lang == "":
        return "Unknown"

    try:
        return Lang(lang).name
    except:
        return lang


def _get_nn_model_filename(
    repo_id: str,
    filename: str,
    subfolder: str = ".",
) -> str:
    nn_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return nn_model_filename


@lru_cache(maxsize=8)
def get_pretrained_model(name: str) -> sherpa_onnx.SpokenLanguageIdentification:
    assert name in (
        "tiny",
        "base",
        "small",
        "medium",
    ), name
    full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
    encoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"{name}-encoder.int8.onnx",
    )

    decoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"{name}-decoder.int8.onnx",
    )

    config = sherpa_onnx.SpokenLanguageIdentificationConfig(
        whisper=sherpa_onnx.SpokenLanguageIdentificationWhisperConfig(
            encoder=encoder,
            decoder=decoder,
        ),
        num_threads=2,
        debug=1,
        provider="cpu",
    )

    return sherpa_onnx.SpokenLanguageIdentification(config)


whisper_models = {
    "tiny": get_pretrained_model,
    "base": get_pretrained_model,
    "small": get_pretrained_model,
    "medium": get_pretrained_model,
}