Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
-
import gradio as gr
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from whisperplus.pipelines.whisper_diarize import ASRDiarizationPipeline
|
5 |
-
from whisperplus.utils.download_utils import download_and_convert_to_mp3
|
6 |
-
from whisperplus.utils.text_utils import format_speech_to_dialogue
|
7 |
-
|
8 |
-
import subprocess
|
9 |
-
|
10 |
-
def install_package(package):
|
11 |
-
subprocess.check_call(['pip', 'install', package, '--no-build-isolation'])
|
12 |
-
|
13 |
-
# Then install flash-attn
|
14 |
-
install_package('flash-attn')
|
15 |
|
16 |
|
17 |
def youtube_url_to_text(url, model_id, language_choice):
|
@@ -26,17 +28,71 @@ def youtube_url_to_text(url, model_id, language_choice):
|
|
26 |
|
27 |
Returns:
|
28 |
transcript (str): The transcript of the speech-to-text conversion.
|
29 |
-
video_path (str): The path of the downloaded video.
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
return
|
37 |
|
38 |
|
39 |
-
def speaker_diarization(url, model_id, num_speakers, min_speaker, max_speaker):
|
40 |
"""
|
41 |
Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
|
42 |
a specified model, and returns the transcript along with the video path.
|
@@ -54,160 +110,104 @@ def speaker_diarization(url, model_id, num_speakers, min_speaker, max_speaker):
|
|
54 |
pipeline = ASRDiarizationPipeline.from_pretrained(
|
55 |
asr_model=model_id,
|
56 |
diarizer_model="pyannote/speaker-diarization",
|
|
|
57 |
chunk_length_s=30,
|
58 |
-
device=
|
59 |
)
|
60 |
|
61 |
-
audio_path =
|
62 |
output_text = pipeline(
|
63 |
audio_path, num_speakers=num_speakers, min_speaker=min_speaker, max_speaker=max_speaker)
|
64 |
dialogue = format_speech_to_dialogue(output_text)
|
65 |
return dialogue, audio_path
|
66 |
|
67 |
|
68 |
-
def
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
with gr.Row():
|
71 |
with gr.Column():
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
"Spanish",
|
79 |
-
"French",
|
80 |
-
"Chinese",
|
81 |
-
"Japanese",
|
82 |
-
"Korean",
|
83 |
-
],
|
84 |
-
value="Turkish",
|
85 |
-
label="Language",
|
86 |
-
)
|
87 |
-
whisper_model_id = gr.Dropdown(
|
88 |
-
choices=[
|
89 |
-
"openai/whisper-large-v3",
|
90 |
-
"openai/whisper-large",
|
91 |
-
"openai/whisper-medium",
|
92 |
-
"openai/whisper-base",
|
93 |
-
"openai/whisper-small",
|
94 |
-
"openai/whisper-tiny",
|
95 |
-
],
|
96 |
-
value="openai/whisper-large-v3",
|
97 |
-
label="Whisper Model",
|
98 |
-
)
|
99 |
-
whisperplus_in_predict = gr.Button(value="Generator")
|
100 |
|
|
|
|
|
101 |
with gr.Column():
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
"https://www.youtube.com/watch?v=di3rHkEZuUw",
|
118 |
-
"distil-whisper/distil-large-v3",
|
119 |
-
"English",
|
120 |
-
],
|
121 |
-
],
|
122 |
-
fn=youtube_url_to_text,
|
123 |
-
inputs=[
|
124 |
-
youtube_url_path,
|
125 |
-
whisper_model_id,
|
126 |
-
language_choice,
|
127 |
-
],
|
128 |
-
outputs=[output_text, output_audio],
|
129 |
-
cache_examples=True,
|
130 |
-
)
|
131 |
-
|
132 |
-
|
133 |
-
def speaker_diarization_app():
|
134 |
-
with gr.Blocks():
|
135 |
with gr.Row():
|
136 |
with gr.Column():
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
value="distil-whisper/distil-large-v3",
|
146 |
-
label="Whisper Model",
|
147 |
-
)
|
148 |
-
num_speakers = gr.Number(value=2, label="Number of Speakers")
|
149 |
-
min_speaker = gr.Number(value=1, label="Minimum Number of Speakers")
|
150 |
-
max_speaker = gr.Number(value=2, label="Maximum Number of Speakers")
|
151 |
-
whisperplus_in_predict = gr.Button(value="Generator")
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
with gr.Column():
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
inputs=[
|
160 |
-
youtube_url_path,
|
161 |
-
whisper_model_id,
|
162 |
-
num_speakers,
|
163 |
-
min_speaker,
|
164 |
-
max_speaker,
|
165 |
-
],
|
166 |
-
outputs=[output_text, output_audio],
|
167 |
-
)
|
168 |
-
gr.Examples(
|
169 |
-
examples=[
|
170 |
-
[
|
171 |
-
"https://www.youtube.com/shorts/o8PgLUgte2k",
|
172 |
-
"distil-whisper/distil-large-v3",
|
173 |
-
2,
|
174 |
-
1,
|
175 |
-
2,
|
176 |
-
],
|
177 |
-
],
|
178 |
-
fn=speaker_diarization,
|
179 |
-
inputs=[
|
180 |
-
youtube_url_path,
|
181 |
-
whisper_model_id,
|
182 |
-
num_speakers,
|
183 |
-
min_speaker,
|
184 |
-
max_speaker,
|
185 |
-
],
|
186 |
-
outputs=[output_text, output_audio],
|
187 |
-
cache_examples=False,
|
188 |
-
)
|
189 |
-
|
190 |
-
|
191 |
-
gradio_app = gr.Blocks()
|
192 |
-
with gradio_app:
|
193 |
-
gr.HTML(
|
194 |
-
"""
|
195 |
-
<h1 style='text-align: center'>
|
196 |
-
WhisperPlus: Advancing Speech-to-Text Processing 🚀
|
197 |
-
</h1>
|
198 |
-
""")
|
199 |
-
gr.HTML(
|
200 |
-
"""
|
201 |
-
<h3 style='text-align: center'>
|
202 |
-
Follow me for more!
|
203 |
-
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
204 |
-
</h3>
|
205 |
-
""")
|
206 |
-
with gr.Row():
|
207 |
-
with gr.Column():
|
208 |
-
with gr.Tab(label="Youtube URL to Text"):
|
209 |
-
youtube_url_to_text_app()
|
210 |
-
with gr.Tab(label="Speaker Diarization"):
|
211 |
-
speaker_diarization_app()
|
212 |
-
|
213 |
-
gradio_app.launch(debug=True)
|
|
|
|
|
1 |
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import BitsAndBytesConfig, HqqConfig
|
5 |
+
|
6 |
+
from whisperplus import (
|
7 |
+
SpeechToTextPipeline,
|
8 |
+
download_youtube_to_mp3,
|
9 |
+
download_youtube_to_mp4,
|
10 |
+
format_speech_to_dialogue,
|
11 |
+
)
|
12 |
+
from whisperplus.pipelines.long_text_summarization import LongTextSummarizationPipeline
|
13 |
+
from whisperplus.pipelines.summarization import TextSummarizationPipeline
|
14 |
+
from whisperplus.pipelines.text2speech import TextToSpeechPipeline
|
15 |
+
from whisperplus.pipelines.whisper_autocaption import WhisperAutoCaptionPipeline
|
16 |
from whisperplus.pipelines.whisper_diarize import ASRDiarizationPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def youtube_url_to_text(url, model_id, language_choice):
|
|
|
28 |
|
29 |
Returns:
|
30 |
transcript (str): The transcript of the speech-to-text conversion.
|
|
|
31 |
"""
|
32 |
+
audio_path = download_youtube_to_mp3(url, output_dir="downloads", filename="test")
|
33 |
+
|
34 |
+
hqq_config = HqqConfig(
|
35 |
+
nbits=4,
|
36 |
+
group_size=64,
|
37 |
+
quant_zero=False,
|
38 |
+
quant_scale=False,
|
39 |
+
axis=0,
|
40 |
+
offload_meta=False,
|
41 |
+
) # axis=0 is used by default
|
42 |
+
|
43 |
+
pipeline = SpeechToTextPipeline(
|
44 |
+
model_id=model_id,
|
45 |
+
quant_config=hqq_config,
|
46 |
+
flash_attention_2=True,
|
47 |
+
)
|
48 |
+
|
49 |
+
transcript = pipeline(
|
50 |
+
audio_path=audio_path,
|
51 |
+
chunk_length_s=30,
|
52 |
+
stride_length_s=5,
|
53 |
+
max_new_tokens=128,
|
54 |
+
batch_size=100,
|
55 |
+
language=language_choice,
|
56 |
+
return_timestamps=False,
|
57 |
+
)
|
58 |
+
return transcript
|
59 |
+
|
60 |
+
|
61 |
+
def summarization(text, model_id="facebook/bart-large-cnn"):
|
62 |
+
"""
|
63 |
+
Main function that performs summarization using a specified model and returns the summary.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
text (str): The text to summarize.
|
67 |
+
model_id (str): The ID of the summarization model to use.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
summary (str): The summary of the text.
|
71 |
+
"""
|
72 |
+
summarizer = TextSummarizationPipeline(model_id=model_id)
|
73 |
+
summary = summarizer.summarize(text)
|
74 |
+
|
75 |
+
return summary[0]["summary_text"]
|
76 |
+
|
77 |
+
|
78 |
+
def long_text_summarization(text, model_id="facebook/bart-large-cnn"):
|
79 |
+
"""
|
80 |
+
Main function that performs summarization using a specified model and returns the summary.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
text (str): The text to summarize.
|
84 |
+
model_id (str): The ID of the summarization model to use.
|
85 |
+
|
86 |
+
Returns:
|
87 |
+
summary (str): The summary of the text.
|
88 |
+
"""
|
89 |
+
summarizer = LongTextSummarizationPipeline(model_id=model_id)
|
90 |
+
summary_text = summarizer.summarize(text)
|
91 |
|
92 |
+
return summary_text
|
93 |
|
94 |
|
95 |
+
def speaker_diarization(url, model_id, device, num_speakers, min_speaker, max_speaker):
|
96 |
"""
|
97 |
Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
|
98 |
a specified model, and returns the transcript along with the video path.
|
|
|
110 |
pipeline = ASRDiarizationPipeline.from_pretrained(
|
111 |
asr_model=model_id,
|
112 |
diarizer_model="pyannote/speaker-diarization",
|
113 |
+
use_auth_token=False,
|
114 |
chunk_length_s=30,
|
115 |
+
device=device,
|
116 |
)
|
117 |
|
118 |
+
audio_path = download_youtube_to_mp3(url)
|
119 |
output_text = pipeline(
|
120 |
audio_path, num_speakers=num_speakers, min_speaker=min_speaker, max_speaker=max_speaker)
|
121 |
dialogue = format_speech_to_dialogue(output_text)
|
122 |
return dialogue, audio_path
|
123 |
|
124 |
|
125 |
+
def text2spech_bark(text, model_id="suno/bark", voice_preset="v2/en_speaker_6"):
|
126 |
+
tts = TextToSpeechPipeline(model_id=model_id)
|
127 |
+
audio = tts(text=text, voice_preset=voice_preset)
|
128 |
+
return audio
|
129 |
+
|
130 |
+
|
131 |
+
def whisper_autocaption(url, language, model_id="openai/whisper-large-v3"):
|
132 |
+
video_path = download_youtube_to_mp4(url)
|
133 |
+
|
134 |
+
caption = WhisperAutoCaptionPipeline(model_id=model_id)
|
135 |
+
output = caption(video_path=video_path, output_path="output.mp4", language=language)
|
136 |
+
return output
|
137 |
+
|
138 |
+
|
139 |
+
with gr.Blocks() as demo:
|
140 |
+
with gr.Tab("YouTube URL to Text"):
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column():
|
143 |
+
url_input = gr.Textbox(label="Enter YouTube URL")
|
144 |
+
model_id_input = gr.Textbox(label="Enter Model ID", value="openai/whisper-medium")
|
145 |
+
language_input = gr.Textbox(label="Enter Language", value="en")
|
146 |
+
submit_btn1 = gr.Button("Submit")
|
147 |
+
with gr.Column():
|
148 |
+
output1 = gr.Textbox(label="Transcript")
|
149 |
+
submit_btn1.click(
|
150 |
+
youtube_url_to_text, inputs=[url_input, model_id_input, language_input], outputs=output1)
|
151 |
+
|
152 |
+
with gr.Tab("Text Summarization"):
|
153 |
+
with gr.Row():
|
154 |
+
with gr.Column():
|
155 |
+
text_input = gr.Textbox(label="Enter Text", lines=5)
|
156 |
+
model_id_input2 = gr.Textbox(label="Enter Model ID", value="facebook/bart-large-cnn")
|
157 |
+
submit_btn2 = gr.Button("Summarize")
|
158 |
+
with gr.Column():
|
159 |
+
output2 = gr.Textbox(label="Summary")
|
160 |
+
submit_btn2.click(summarization, inputs=[text_input, model_id_input2], outputs=output2)
|
161 |
+
|
162 |
+
with gr.Tab("Long Text Summarization"):
|
163 |
with gr.Row():
|
164 |
with gr.Column():
|
165 |
+
long_text_input = gr.Textbox(label="Enter Long Text", lines=10)
|
166 |
+
model_id_input3 = gr.Textbox(label="Enter Model ID", value="facebook/bart-large-cnn")
|
167 |
+
submit_btn3 = gr.Button("Summarize Long Text")
|
168 |
+
with gr.Column():
|
169 |
+
output3 = gr.Textbox(label="Long Text Summary")
|
170 |
+
submit_btn3.click(long_text_summarization, inputs=[long_text_input, model_id_input3], outputs=output3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
with gr.Tab("Speaker Diarization"):
|
173 |
+
with gr.Row():
|
174 |
with gr.Column():
|
175 |
+
url_input2 = gr.Textbox(label="Enter YouTube URL")
|
176 |
+
model_id_input4 = gr.Textbox(label="Enter Model ID")
|
177 |
+
num_speakers = gr.Number(label="Number of Speakers", value=2)
|
178 |
+
min_speakers = gr.Number(label="Min Speakers", value=1)
|
179 |
+
max_speakers = gr.Number(label="Max Speakers", value=4)
|
180 |
+
device = gr.Textbox(label="Device", value="cpu")
|
181 |
+
submit_btn4 = gr.Button("Diarize")
|
182 |
+
with gr.Column():
|
183 |
+
output4 = gr.DataFrame(headers=["Speaker", "Text"], datatype=["str", "str"])
|
184 |
+
submit_btn4.click(
|
185 |
+
speaker_diarization,
|
186 |
+
inputs=[url_input2, model_id_input4, device, num_speakers, min_speakers, max_speakers],
|
187 |
+
outputs=output4)
|
188 |
+
|
189 |
+
with gr.Tab("Text to Speech"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
with gr.Row():
|
191 |
with gr.Column():
|
192 |
+
text_input2 = gr.Textbox(label="Enter Text", lines=3)
|
193 |
+
model_id_input5 = gr.Textbox(label="Enter Model ID", value="suno/bark")
|
194 |
+
voice_preset = gr.Textbox(label="Voice Preset", value="v2/en_speaker_6")
|
195 |
+
submit_btn5 = gr.Button("Generate Audio")
|
196 |
+
with gr.Column():
|
197 |
+
output5 = gr.Audio(label="Generated Audio")
|
198 |
+
submit_btn5.click(
|
199 |
+
text2spech_bark, inputs=[text_input2, model_id_input5, voice_preset], outputs=output5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
with gr.Tab("Whisper Autocaption"):
|
202 |
+
with gr.Row():
|
203 |
+
with gr.Column():
|
204 |
+
url_input3 = gr.Textbox(label="Enter YouTube URL")
|
205 |
+
language = gr.Textbox(label="Language", value="en")
|
206 |
+
model_id_input6 = gr.Textbox(label="Enter Model ID", value="openai/whisper-large-v2")
|
207 |
+
submit_btn6 = gr.Button("Generate Captions")
|
208 |
with gr.Column():
|
209 |
+
output6 = gr.Video(label="Captioned Video")
|
210 |
+
submit_btn6.click(
|
211 |
+
whisper_autocaption, inputs=[url_input3, language, model_id_input6], outputs=output6)
|
212 |
+
|
213 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|