kadirnar commited on
Commit
884c49d
·
1 Parent(s): f39f56e

Upload 40 files

Browse files
Files changed (40) hide show
  1. LICENSE +201 -0
  2. MANIFEST.in +1 -0
  3. app.py +121 -0
  4. metaseg/__init__.py +12 -0
  5. metaseg/app.py +121 -0
  6. metaseg/automatic_mask_generator.py +368 -0
  7. metaseg/build_sam.py +107 -0
  8. metaseg/demo.py +112 -0
  9. metaseg/modeling/__init__.py +11 -0
  10. metaseg/modeling/__pycache__/__init__.cpython-310.pyc +0 -0
  11. metaseg/modeling/__pycache__/common.cpython-310.pyc +0 -0
  12. metaseg/modeling/__pycache__/image_encoder.cpython-310.pyc +0 -0
  13. metaseg/modeling/__pycache__/mask_decoder.cpython-310.pyc +0 -0
  14. metaseg/modeling/__pycache__/prompt_encoder.cpython-310.pyc +0 -0
  15. metaseg/modeling/__pycache__/sam.cpython-310.pyc +0 -0
  16. metaseg/modeling/__pycache__/transformer.cpython-310.pyc +0 -0
  17. metaseg/modeling/common.py +43 -0
  18. metaseg/modeling/image_encoder.py +389 -0
  19. metaseg/modeling/mask_decoder.py +169 -0
  20. metaseg/modeling/prompt_encoder.py +212 -0
  21. metaseg/modeling/sam.py +174 -0
  22. metaseg/modeling/transformer.py +232 -0
  23. metaseg/predictor.py +264 -0
  24. metaseg/utils/__init__.py +5 -0
  25. metaseg/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  26. metaseg/utils/__pycache__/amg.cpython-310.pyc +0 -0
  27. metaseg/utils/__pycache__/file.cpython-310.pyc +0 -0
  28. metaseg/utils/__pycache__/transforms.cpython-310.pyc +0 -0
  29. metaseg/utils/amg.py +330 -0
  30. metaseg/utils/file.py +32 -0
  31. metaseg/utils/onnx.py +138 -0
  32. metaseg/utils/transforms.py +92 -0
  33. pyproject.toml +6 -0
  34. requirements.txt +10 -0
  35. scripts/amg.py +233 -0
  36. scripts/code_format.sh +2 -0
  37. scripts/export_onnx_model.py +198 -0
  38. scripts/package.sh +2 -0
  39. setup.cfg +11 -0
  40. setup.py +58 -0
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
MANIFEST.in ADDED
@@ -0,0 +1 @@
 
 
1
+ include requirements.txt
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from metaseg import SegAutoMaskGenerator
4
+
5
+
6
+ def image_app():
7
+ with gr.Blocks():
8
+ with gr.Row():
9
+ with gr.Column():
10
+ seg_automask_image_file = gr.Image(type="filepath").style(height=260)
11
+
12
+ with gr.Row():
13
+ with gr.Column():
14
+ seg_automask_image_model_type = gr.Dropdown(
15
+ choices=[
16
+ "vit_h",
17
+ "vit_l",
18
+ "vit_b",
19
+ ],
20
+ value="vit_l",
21
+ label="Model Type",
22
+ )
23
+
24
+ seg_automask_image_points_per_side = gr.Slider(
25
+ minimum=0,
26
+ maximum=32,
27
+ step=2,
28
+ value=16,
29
+ label="Points per Side",
30
+ )
31
+
32
+ seg_automask_image_points_per_batch = gr.Slider(
33
+ minimum=0,
34
+ maximum=64,
35
+ step=2,
36
+ value=64,
37
+ label="Points per Batch",
38
+ )
39
+
40
+ seg_automask_image_predict = gr.Button(value="Generator")
41
+
42
+ with gr.Column():
43
+ output_image = gr.Image()
44
+
45
+ seg_automask_image_predict.click(
46
+ fn=SegAutoMaskGenerator().save_image,
47
+ inputs=[
48
+ seg_automask_image_file,
49
+ seg_automask_image_model_type,
50
+ seg_automask_image_points_per_side,
51
+ seg_automask_image_points_per_batch,
52
+ ],
53
+ outputs=[output_image],
54
+ )
55
+
56
+
57
+ def video_app():
58
+ with gr.Blocks():
59
+ with gr.Row():
60
+ with gr.Column():
61
+ seg_automask_video_file = gr.Video().style(height=260)
62
+
63
+ with gr.Row():
64
+ with gr.Column():
65
+ seg_automask_video_model_type = gr.Dropdown(
66
+ choices=[
67
+ "vit_h",
68
+ "vit_l",
69
+ "vit_b",
70
+ ],
71
+ value="vit_l",
72
+ label="Model Type",
73
+ )
74
+
75
+ seg_automask_video_points_per_side = gr.Slider(
76
+ minimum=0,
77
+ maximum=32,
78
+ step=2,
79
+ value=16,
80
+ label="Points per Side",
81
+ )
82
+ seg_automask_video_points_per_batch = gr.Slider(
83
+ minimum=0,
84
+ maximum=64,
85
+ step=2,
86
+ value=64,
87
+ label="Points per Batch",
88
+ )
89
+
90
+ seg_automask_video_predict = gr.Button(value="Generator")
91
+ with gr.Column():
92
+ output_video = gr.Video()
93
+
94
+ seg_automask_video_predict.click(
95
+ fn=SegAutoMaskGenerator().save_image,
96
+ inputs=[
97
+ seg_automask_video_file,
98
+ seg_automask_video_model_type,
99
+ seg_automask_video_points_per_side,
100
+ seg_automask_video_points_per_batch,
101
+ ],
102
+ outputs=[output_video],
103
+ )
104
+
105
+
106
+ def metaseg_app():
107
+ app = gr.Blocks()
108
+ with app:
109
+ with gr.Row():
110
+ with gr.Column():
111
+ with gr.Tab("Image"):
112
+ image_app()
113
+ with gr.Tab("Video"):
114
+ video_app()
115
+
116
+ app.queue(concurrency_count=2)
117
+ app.launch(debug=True, enable_queue=True)
118
+
119
+
120
+ if __name__ == "__main__":
121
+ metaseg_app()
metaseg/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from metaseg.automatic_mask_generator import SamAutomaticMaskGenerator
8
+ from metaseg.build_sam import build_sam, build_sam_vit_b, build_sam_vit_h, build_sam_vit_l, sam_model_registry
9
+ from metaseg.demo import SegAutoMaskGenerator
10
+ from metaseg.predictor import SamPredictor
11
+
12
+ __version__ = "0.2.3"
metaseg/app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from metaseg import SegAutoMaskGenerator
4
+
5
+
6
+ def image_app():
7
+ with gr.Blocks():
8
+ with gr.Row():
9
+ with gr.Column():
10
+ seg_automask_image_file = gr.Image(type="filepath").style(height=260)
11
+
12
+ with gr.Row():
13
+ with gr.Column():
14
+ seg_automask_image_model_type = gr.Dropdown(
15
+ choices=[
16
+ "vit_h",
17
+ "vit_l",
18
+ "vit_b",
19
+ ],
20
+ value="vit_l",
21
+ label="Model Type",
22
+ )
23
+
24
+ seg_automask_image_points_per_side = gr.Slider(
25
+ minimum=0,
26
+ maximum=32,
27
+ step=2,
28
+ value=16,
29
+ label="Points per Side",
30
+ )
31
+
32
+ seg_automask_image_points_per_batch = gr.Slider(
33
+ minimum=0,
34
+ maximum=64,
35
+ step=2,
36
+ value=64,
37
+ label="Points per Batch",
38
+ )
39
+
40
+ seg_automask_image_predict = gr.Button(value="Generator")
41
+
42
+ with gr.Column():
43
+ output_image = gr.Image()
44
+
45
+ seg_automask_image_predict.click(
46
+ fn=SegAutoMaskGenerator().save_image,
47
+ inputs=[
48
+ seg_automask_image_file,
49
+ seg_automask_image_model_type,
50
+ seg_automask_image_points_per_side,
51
+ seg_automask_image_points_per_batch,
52
+ ],
53
+ outputs=[output_image],
54
+ )
55
+
56
+
57
+ def video_app():
58
+ with gr.Blocks():
59
+ with gr.Row():
60
+ with gr.Column():
61
+ seg_automask_video_file = gr.Video().style(height=260)
62
+
63
+ with gr.Row():
64
+ with gr.Column():
65
+ seg_automask_video_model_type = gr.Dropdown(
66
+ choices=[
67
+ "vit_h",
68
+ "vit_l",
69
+ "vit_b",
70
+ ],
71
+ value="vit_l",
72
+ label="Model Type",
73
+ )
74
+
75
+ seg_automask_video_points_per_side = gr.Slider(
76
+ minimum=0,
77
+ maximum=32,
78
+ step=2,
79
+ value=16,
80
+ label="Points per Side",
81
+ )
82
+ seg_automask_video_points_per_batch = gr.Slider(
83
+ minimum=0,
84
+ maximum=64,
85
+ step=2,
86
+ value=64,
87
+ label="Points per Batch",
88
+ )
89
+
90
+ seg_automask_video_predict = gr.Button(value="Generator")
91
+ with gr.Column():
92
+ output_video = gr.Video()
93
+
94
+ seg_automask_video_predict.click(
95
+ fn=SegAutoMaskGenerator().save_image,
96
+ inputs=[
97
+ seg_automask_video_file,
98
+ seg_automask_video_model_type,
99
+ seg_automask_video_points_per_side,
100
+ seg_automask_video_points_per_batch,
101
+ ],
102
+ outputs=[output_video],
103
+ )
104
+
105
+
106
+ def metaseg_app():
107
+ app = gr.Blocks()
108
+ with app:
109
+ with gr.Row():
110
+ with gr.Column():
111
+ with gr.Tab("Image"):
112
+ image_app()
113
+ with gr.Tab("Video"):
114
+ video_app()
115
+
116
+ app.queue(concurrency_count=2)
117
+ app.launch(debug=True, enable_queue=True)
118
+
119
+
120
+ if __name__ == "__main__":
121
+ metaseg_app()
metaseg/automatic_mask_generator.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Any, Dict, List, Optional, Tuple
8
+
9
+ import numpy as np
10
+ import torch
11
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
12
+
13
+ from metaseg.modeling import Sam
14
+ from metaseg.predictor import SamPredictor
15
+ from metaseg.utils.amg import (
16
+ MaskData,
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ remove_small_regions,
28
+ rle_to_mask,
29
+ uncrop_boxes_xyxy,
30
+ uncrop_masks,
31
+ uncrop_points,
32
+ )
33
+
34
+
35
+ class SamAutomaticMaskGenerator:
36
+ def __init__(
37
+ self,
38
+ model: Sam,
39
+ points_per_side: Optional[int] = 32,
40
+ points_per_batch: int = 64,
41
+ pred_iou_thresh: float = 0.88,
42
+ stability_score_thresh: float = 0.95,
43
+ stability_score_offset: float = 1.0,
44
+ box_nms_thresh: float = 0.7,
45
+ crop_n_layers: int = 0,
46
+ crop_nms_thresh: float = 0.7,
47
+ crop_overlap_ratio: float = 512 / 1500,
48
+ crop_n_points_downscale_factor: int = 1,
49
+ point_grids: Optional[List[np.ndarray]] = None,
50
+ min_mask_region_area: int = 0,
51
+ output_mode: str = "binary_mask",
52
+ ) -> None:
53
+ """
54
+ Using a SAM model, generates masks for the entire image.
55
+ Generates a grid of point prompts over the image, then filters
56
+ low quality and duplicate masks. The default settings are chosen
57
+ for SAM with a ViT-H backbone.
58
+
59
+ Arguments:
60
+ model (Sam): The SAM model to use for mask prediction.
61
+ points_per_side (int or None): The number of points to be sampled
62
+ along one side of the image. The total number of points is
63
+ points_per_side**2. If None, 'point_grids' must provide explicit
64
+ point sampling.
65
+ points_per_batch (int): Sets the number of points run simultaneously
66
+ by the model. Higher numbers may be faster but use more GPU memory.
67
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
68
+ model's predicted mask quality.
69
+ stability_score_thresh (float): A filtering threshold in [0,1], using
70
+ the stability of the mask under changes to the cutoff used to binarize
71
+ the model's mask predictions.
72
+ stability_score_offset (float): The amount to shift the cutoff when
73
+ calculated the stability score.
74
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
75
+ suppression to filter duplicate masks.
76
+ crops_n_layers (int): If >0, mask prediction will be run again on
77
+ crops of the image. Sets the number of layers to run, where each
78
+ layer has 2**i_layer number of image crops.
79
+ crops_nms_thresh (float): The box IoU cutoff used by non-maximal
80
+ suppression to filter duplicate masks between different crops.
81
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
82
+ In the first crop layer, crops will overlap by this fraction of
83
+ the image length. Later layers with more crops scale down this overlap.
84
+ crop_n_points_downscale_factor (int): The number of points-per-side
85
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
86
+ point_grids (list(np.ndarray) or None): A list over explicit grids
87
+ of points used for sampling, normalized to [0,1]. The nth grid in the
88
+ list is used in the nth crop layer. Exclusive with points_per_side.
89
+ min_mask_region_area (int): If >0, postprocessing will be applied
90
+ to remove disconnected regions and holes in masks with area smaller
91
+ than min_mask_region_area. Requires opencv.
92
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
93
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
94
+ For large resolutions, 'binary_mask' may consume large amounts of
95
+ memory.
96
+ """
97
+
98
+ assert (points_per_side is None) != (
99
+ point_grids is None
100
+ ), "Exactly one of points_per_side or point_grid must be provided."
101
+ if points_per_side is not None:
102
+ self.point_grids = build_all_layer_point_grids(
103
+ points_per_side,
104
+ crop_n_layers,
105
+ crop_n_points_downscale_factor,
106
+ )
107
+ elif point_grids is not None:
108
+ self.point_grids = point_grids
109
+ else:
110
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
111
+
112
+ assert output_mode in [
113
+ "binary_mask",
114
+ "uncompressed_rle",
115
+ "coco_rle",
116
+ ], f"Unknown output_mode {output_mode}."
117
+ if output_mode == "coco_rle":
118
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
119
+
120
+ if min_mask_region_area > 0:
121
+ import cv2 # type: ignore # noqa: F401
122
+
123
+ self.predictor = SamPredictor(model)
124
+ self.points_per_batch = points_per_batch
125
+ self.pred_iou_thresh = pred_iou_thresh
126
+ self.stability_score_thresh = stability_score_thresh
127
+ self.stability_score_offset = stability_score_offset
128
+ self.box_nms_thresh = box_nms_thresh
129
+ self.crop_n_layers = crop_n_layers
130
+ self.crop_nms_thresh = crop_nms_thresh
131
+ self.crop_overlap_ratio = crop_overlap_ratio
132
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
133
+ self.min_mask_region_area = min_mask_region_area
134
+ self.output_mode = output_mode
135
+
136
+ @torch.no_grad()
137
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
138
+ """
139
+ Generates masks for the given image.
140
+
141
+ Arguments:
142
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
143
+
144
+ Returns:
145
+ list(dict(str, any)): A list over records for masks. Each record is
146
+ a dict containing the following keys:
147
+ segmentation (dict(str, any) or np.ndarray): The mask. If
148
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
149
+ is a dictionary containing the RLE.
150
+ bbox (list(float)): The box around the mask, in XYWH format.
151
+ area (int): The area in pixels of the mask.
152
+ predicted_iou (float): The model's own prediction of the mask's
153
+ quality. This is filtered by the pred_iou_thresh parameter.
154
+ point_coords (list(list(float))): The point coordinates input
155
+ to the model to generate this mask.
156
+ stability_score (float): A measure of the mask's quality. This
157
+ is filtered on using the stability_score_thresh parameter.
158
+ crop_box (list(float)): The crop of the image used to generate
159
+ the mask, given in XYWH format.
160
+ """
161
+
162
+ # Generate masks
163
+ mask_data = self._generate_masks(image)
164
+
165
+ # Filter small disconnected regions and holes in masks
166
+ if self.min_mask_region_area > 0:
167
+ mask_data = self.postprocess_small_regions(
168
+ mask_data,
169
+ self.min_mask_region_area,
170
+ max(self.box_nms_thresh, self.crop_nms_thresh),
171
+ )
172
+
173
+ # Encode masks
174
+ if self.output_mode == "coco_rle":
175
+ mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
176
+ elif self.output_mode == "binary_mask":
177
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
178
+ else:
179
+ mask_data["segmentations"] = mask_data["rles"]
180
+
181
+ # Write mask records
182
+ curr_anns = []
183
+ for idx in range(len(mask_data["segmentations"])):
184
+ ann = {
185
+ "segmentation": mask_data["segmentations"][idx],
186
+ "area": area_from_rle(mask_data["rles"][idx]),
187
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
188
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
189
+ "point_coords": [mask_data["points"][idx].tolist()],
190
+ "stability_score": mask_data["stability_score"][idx].item(),
191
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
192
+ }
193
+ curr_anns.append(ann)
194
+
195
+ return curr_anns
196
+
197
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
198
+ orig_size = image.shape[:2]
199
+ crop_boxes, layer_idxs = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio)
200
+
201
+ # Iterate over image crops
202
+ data = MaskData()
203
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
204
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
205
+ data.cat(crop_data)
206
+
207
+ # Remove duplicate masks between crops
208
+ if len(crop_boxes) > 1:
209
+ # Prefer masks from smaller crops
210
+ scores = 1 / box_area(data["crop_boxes"])
211
+ scores = scores.to(data["boxes"].device)
212
+ keep_by_nms = batched_nms(
213
+ data["boxes"].float(),
214
+ scores,
215
+ torch.zeros(len(data["boxes"])), # categories
216
+ iou_threshold=self.crop_nms_thresh,
217
+ )
218
+ data.filter(keep_by_nms)
219
+
220
+ data.to_numpy()
221
+ return data
222
+
223
+ def _process_crop(
224
+ self,
225
+ image: np.ndarray,
226
+ crop_box: List[int],
227
+ crop_layer_idx: int,
228
+ orig_size: Tuple[int, ...],
229
+ ) -> MaskData:
230
+ # Crop the image and calculate embeddings
231
+ x0, y0, x1, y1 = crop_box
232
+ cropped_im = image[y0:y1, x0:x1, :]
233
+ cropped_im_size = cropped_im.shape[:2]
234
+ self.predictor.set_image(cropped_im)
235
+
236
+ # Get points for this crop
237
+ points_scale = np.array(cropped_im_size)[None, ::-1]
238
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
239
+
240
+ # Generate masks for this crop in batches
241
+ data = MaskData()
242
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
243
+ batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
244
+ data.cat(batch_data)
245
+ del batch_data
246
+ self.predictor.reset_image()
247
+
248
+ # Remove duplicates within this crop.
249
+ keep_by_nms = batched_nms(
250
+ data["boxes"].float(),
251
+ data["iou_preds"],
252
+ torch.zeros(len(data["boxes"])), # categories
253
+ iou_threshold=self.box_nms_thresh,
254
+ )
255
+ data.filter(keep_by_nms)
256
+
257
+ # Return to the original image frame
258
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
259
+ data["points"] = uncrop_points(data["points"], crop_box)
260
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
261
+
262
+ return data
263
+
264
+ def _process_batch(
265
+ self,
266
+ points: np.ndarray,
267
+ im_size: Tuple[int, ...],
268
+ crop_box: List[int],
269
+ orig_size: Tuple[int, ...],
270
+ ) -> MaskData:
271
+ orig_h, orig_w = orig_size
272
+
273
+ # Run model on this batch
274
+ transformed_points = self.predictor.transform.apply_coords(points, im_size)
275
+ in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
276
+ in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
277
+ masks, iou_preds, _ = self.predictor.predict_torch(
278
+ in_points[:, None, :],
279
+ in_labels[:, None],
280
+ multimask_output=True,
281
+ return_logits=True,
282
+ )
283
+
284
+ # Serialize predictions and store in MaskData
285
+ data = MaskData(
286
+ masks=masks.flatten(0, 1),
287
+ iou_preds=iou_preds.flatten(0, 1),
288
+ points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
289
+ )
290
+ del masks
291
+
292
+ # Filter by predicted IoU
293
+ if self.pred_iou_thresh > 0.0:
294
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
295
+ data.filter(keep_mask)
296
+
297
+ # Calculate stability score
298
+ data["stability_score"] = calculate_stability_score(
299
+ data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
300
+ )
301
+ if self.stability_score_thresh > 0.0:
302
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
303
+ data.filter(keep_mask)
304
+
305
+ # Threshold masks and calculate boxes
306
+ data["masks"] = data["masks"] > self.predictor.model.mask_threshold
307
+ data["boxes"] = batched_mask_to_box(data["masks"])
308
+
309
+ # Filter boxes that touch crop boundaries
310
+ keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
311
+ if not torch.all(keep_mask):
312
+ data.filter(keep_mask)
313
+
314
+ # Compress to RLE
315
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
316
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
317
+ del data["masks"]
318
+
319
+ return data
320
+
321
+ @staticmethod
322
+ def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData:
323
+ """
324
+ Removes small disconnected regions and holes in masks, then reruns
325
+ box NMS to remove any new duplicates.
326
+
327
+ Edits mask_data in place.
328
+
329
+ Requires open-cv as a dependency.
330
+ """
331
+ if len(mask_data["rles"]) == 0:
332
+ return mask_data
333
+
334
+ # Filter small disconnected regions and holes
335
+ new_masks = []
336
+ scores = []
337
+ for rle in mask_data["rles"]:
338
+ mask = rle_to_mask(rle)
339
+
340
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
341
+ unchanged = not changed
342
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
343
+ unchanged = unchanged and not changed
344
+
345
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
346
+ # Give score=0 to changed masks and score=1 to unchanged masks
347
+ # so NMS will prefer ones that didn't need postprocessing
348
+ scores.append(float(unchanged))
349
+
350
+ # Recalculate boxes and remove any new duplicates
351
+ masks = torch.cat(new_masks, dim=0)
352
+ boxes = batched_mask_to_box(masks)
353
+ keep_by_nms = batched_nms(
354
+ boxes.float(),
355
+ torch.as_tensor(scores),
356
+ torch.zeros(len(boxes)), # categories
357
+ iou_threshold=nms_thresh,
358
+ )
359
+
360
+ # Only recalculate RLEs for masks that have changed
361
+ for i_mask in keep_by_nms:
362
+ if scores[i_mask] == 0.0:
363
+ mask_torch = masks[i_mask].unsqueeze(0)
364
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
365
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
366
+ mask_data.filter(keep_by_nms)
367
+
368
+ return mask_data
metaseg/build_sam.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from functools import partial
8
+
9
+ import torch
10
+
11
+ from metaseg.modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
12
+
13
+
14
+ def build_sam_vit_h(checkpoint=None):
15
+ return _build_sam(
16
+ encoder_embed_dim=1280,
17
+ encoder_depth=32,
18
+ encoder_num_heads=16,
19
+ encoder_global_attn_indexes=[7, 15, 23, 31],
20
+ checkpoint=checkpoint,
21
+ )
22
+
23
+
24
+ build_sam = build_sam_vit_h
25
+
26
+
27
+ def build_sam_vit_l(checkpoint=None):
28
+ return _build_sam(
29
+ encoder_embed_dim=1024,
30
+ encoder_depth=24,
31
+ encoder_num_heads=16,
32
+ encoder_global_attn_indexes=[5, 11, 17, 23],
33
+ checkpoint=checkpoint,
34
+ )
35
+
36
+
37
+ def build_sam_vit_b(checkpoint=None):
38
+ return _build_sam(
39
+ encoder_embed_dim=768,
40
+ encoder_depth=12,
41
+ encoder_num_heads=12,
42
+ encoder_global_attn_indexes=[2, 5, 8, 11],
43
+ checkpoint=checkpoint,
44
+ )
45
+
46
+
47
+ sam_model_registry = {
48
+ "default": build_sam,
49
+ "vit_h": build_sam,
50
+ "vit_l": build_sam_vit_l,
51
+ "vit_b": build_sam_vit_b,
52
+ }
53
+
54
+
55
+ def _build_sam(
56
+ encoder_embed_dim,
57
+ encoder_depth,
58
+ encoder_num_heads,
59
+ encoder_global_attn_indexes,
60
+ checkpoint=None,
61
+ ):
62
+ prompt_embed_dim = 256
63
+ image_size = 1024
64
+ vit_patch_size = 16
65
+ image_embedding_size = image_size // vit_patch_size
66
+ sam = Sam(
67
+ image_encoder=ImageEncoderViT(
68
+ depth=encoder_depth,
69
+ embed_dim=encoder_embed_dim,
70
+ img_size=image_size,
71
+ mlp_ratio=4,
72
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
73
+ num_heads=encoder_num_heads,
74
+ patch_size=vit_patch_size,
75
+ qkv_bias=True,
76
+ use_rel_pos=True,
77
+ global_attn_indexes=encoder_global_attn_indexes,
78
+ window_size=14,
79
+ out_chans=prompt_embed_dim,
80
+ ),
81
+ prompt_encoder=PromptEncoder(
82
+ embed_dim=prompt_embed_dim,
83
+ image_embedding_size=(image_embedding_size, image_embedding_size),
84
+ input_image_size=(image_size, image_size),
85
+ mask_in_chans=16,
86
+ ),
87
+ mask_decoder=MaskDecoder(
88
+ num_multimask_outputs=3,
89
+ transformer=TwoWayTransformer(
90
+ depth=2,
91
+ embedding_dim=prompt_embed_dim,
92
+ mlp_dim=2048,
93
+ num_heads=8,
94
+ ),
95
+ transformer_dim=prompt_embed_dim,
96
+ iou_head_depth=3,
97
+ iou_head_hidden_dim=256,
98
+ ),
99
+ pixel_mean=[123.675, 116.28, 103.53],
100
+ pixel_std=[58.395, 57.12, 57.375],
101
+ )
102
+ sam.eval()
103
+ if checkpoint is not None:
104
+ with open(checkpoint, "rb") as f:
105
+ state_dict = torch.load(f)
106
+ sam.load_state_dict(state_dict)
107
+ return sam
metaseg/demo.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import torch
6
+
7
+ from metaseg import SamAutomaticMaskGenerator, sam_model_registry
8
+ from metaseg.utils.file import download_model
9
+
10
+
11
+ class SegAutoMaskGenerator:
12
+ def __init__(self):
13
+ self.model = None
14
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
15
+
16
+ def load_model(self, model_type):
17
+ if self.model is None:
18
+ model_path = download_model(model_type)
19
+ model = sam_model_registry[self.model_type](checkpoint=model_path)
20
+ model.to(device=self.device)
21
+ self.model = model
22
+
23
+ return self.model
24
+
25
+ def load_image(self, image_path):
26
+ image = cv2.imread(image_path)
27
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
28
+ return image
29
+
30
+ def load_video(self, video_path):
31
+ cap = cv2.VideoCapture(video_path)
32
+ frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
33
+ frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
34
+ fourcc = cv2.VideoWriter_fourcc(*"XVID")
35
+ fps = int(cap.get(cv2.CAP_PROP_FPS))
36
+ out = cv2.VideoWriter("output.mp4", fourcc, fps, (frame_width, frame_height))
37
+
38
+ return cap, out
39
+
40
+ def predict(self, frame, model_type, points_per_side, points_per_batch):
41
+ model = self.load_model(model_type)
42
+ mask_generator = SamAutomaticMaskGenerator(
43
+ model, points_per_side=points_per_side, points_per_batch=points_per_batch
44
+ )
45
+ masks = mask_generator.generate(frame)
46
+
47
+ return frame, masks
48
+
49
+ def save_image(self, source, model_type, points_per_side, points_per_batch):
50
+ read_image = self.load_image(source)
51
+ image, anns = self.predict(read_image, model_type, points_per_side, points_per_batch)
52
+ if len(anns) == 0:
53
+ return
54
+
55
+ sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
56
+ mask_image = np.zeros((anns[0]["segmentation"].shape[0], anns[0]["segmentation"].shape[1], 3), dtype=np.uint8)
57
+ colors = np.random.randint(0, 255, size=(256, 3), dtype=np.uint8)
58
+ for i, ann in enumerate(sorted_anns):
59
+ m = ann["segmentation"]
60
+ img = np.ones((m.shape[0], m.shape[1], 3), dtype=np.uint8)
61
+ color = colors[i % 256]
62
+ for i in range(3):
63
+ img[:, :, 0] = color[0]
64
+ img[:, :, 1] = color[1]
65
+ img[:, :, 2] = color[2]
66
+ img = cv2.bitwise_and(img, img, mask=m.astype(np.uint8))
67
+ img = cv2.addWeighted(img, 0.35, np.zeros_like(img), 0.65, 0)
68
+ mask_image = cv2.add(mask_image, img)
69
+
70
+ combined_mask = cv2.add(image, mask_image)
71
+ cv2.imwrite("output.jpg", combined_mask)
72
+
73
+ return "output.jpg"
74
+
75
+ def save_video(self, source, model_type, points_per_side, points_per_batch):
76
+ cap, out = self.load_video()
77
+ colors = np.random.randint(0, 255, size=(256, 3), dtype=np.uint8)
78
+
79
+ while True:
80
+ ret, frame = cap.read()
81
+ if not ret:
82
+ break
83
+
84
+ image, anns = self.predict(frame)
85
+ if len(anns) == 0:
86
+ continue
87
+
88
+ sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
89
+ mask_image = np.zeros(
90
+ (anns[0]["segmentation"].shape[0], anns[0]["segmentation"].shape[1], 3), dtype=np.uint8
91
+ )
92
+
93
+ for i, ann in enumerate(sorted_anns):
94
+ if ann["area"] > 5000:
95
+ m = ann["segmentation"]
96
+ color = colors[i % 256] # Her nesne için farklı bir renk kullan
97
+ img = np.zeros((m.shape[0], m.shape[1], 3), dtype=np.uint8)
98
+ img[:, :, 0] = color[0]
99
+ img[:, :, 1] = color[1]
100
+ img[:, :, 2] = color[2]
101
+ img = cv2.bitwise_and(img, img, mask=m.astype(np.uint8))
102
+ img = cv2.addWeighted(img, 0.35, np.zeros_like(img), 0.65, 0)
103
+ mask_image = cv2.add(mask_image, img)
104
+
105
+ combined_mask = cv2.add(frame, mask_image)
106
+ out.write(combined_mask)
107
+
108
+ out.release()
109
+ cap.release()
110
+ cv2.destroyAllWindows()
111
+
112
+ return "output.mp4"
metaseg/modeling/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from metaseg.modeling.image_encoder import ImageEncoderViT
8
+ from metaseg.modeling.mask_decoder import MaskDecoder
9
+ from metaseg.modeling.prompt_encoder import PromptEncoder
10
+ from metaseg.modeling.sam import Sam
11
+ from metaseg.modeling.transformer import TwoWayTransformer
metaseg/modeling/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (484 Bytes). View file
 
metaseg/modeling/__pycache__/common.cpython-310.pyc ADDED
Binary file (1.75 kB). View file
 
metaseg/modeling/__pycache__/image_encoder.cpython-310.pyc ADDED
Binary file (12.6 kB). View file
 
metaseg/modeling/__pycache__/mask_decoder.cpython-310.pyc ADDED
Binary file (5.46 kB). View file
 
metaseg/modeling/__pycache__/prompt_encoder.cpython-310.pyc ADDED
Binary file (7.68 kB). View file
 
metaseg/modeling/__pycache__/sam.cpython-310.pyc ADDED
Binary file (6.74 kB). View file
 
metaseg/modeling/__pycache__/transformer.cpython-310.pyc ADDED
Binary file (6.59 kB). View file
 
metaseg/modeling/common.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Type
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+
13
+ class MLPBlock(nn.Module):
14
+ def __init__(
15
+ self,
16
+ embedding_dim: int,
17
+ mlp_dim: int,
18
+ act: Type[nn.Module] = nn.GELU,
19
+ ) -> None:
20
+ super().__init__()
21
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
22
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
23
+ self.act = act()
24
+
25
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
26
+ return self.lin2(self.act(self.lin1(x)))
27
+
28
+
29
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
30
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
31
+ class LayerNorm2d(nn.Module):
32
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
33
+ super().__init__()
34
+ self.weight = nn.Parameter(torch.ones(num_channels))
35
+ self.bias = nn.Parameter(torch.zeros(num_channels))
36
+ self.eps = eps
37
+
38
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
+ u = x.mean(1, keepdim=True)
40
+ s = (x - u).pow(2).mean(1, keepdim=True)
41
+ x = (x - u) / torch.sqrt(s + self.eps)
42
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
43
+ return x
metaseg/modeling/image_encoder.py ADDED
@@ -0,0 +1,389 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional, Tuple, Type
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+
13
+ from metaseg.modeling.common import LayerNorm2d, MLPBlock
14
+
15
+
16
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
17
+ class ImageEncoderViT(nn.Module):
18
+ def __init__(
19
+ self,
20
+ img_size: int = 1024,
21
+ patch_size: int = 16,
22
+ in_chans: int = 3,
23
+ embed_dim: int = 768,
24
+ depth: int = 12,
25
+ num_heads: int = 12,
26
+ mlp_ratio: float = 4.0,
27
+ out_chans: int = 256,
28
+ qkv_bias: bool = True,
29
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
30
+ act_layer: Type[nn.Module] = nn.GELU,
31
+ use_abs_pos: bool = True,
32
+ use_rel_pos: bool = False,
33
+ rel_pos_zero_init: bool = True,
34
+ window_size: int = 0,
35
+ global_attn_indexes: Tuple[int, ...] = (),
36
+ ) -> None:
37
+ """
38
+ Args:
39
+ img_size (int): Input image size.
40
+ patch_size (int): Patch size.
41
+ in_chans (int): Number of input image channels.
42
+ embed_dim (int): Patch embedding dimension.
43
+ depth (int): Depth of ViT.
44
+ num_heads (int): Number of attention heads in each ViT block.
45
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
46
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
47
+ norm_layer (nn.Module): Normalization layer.
48
+ act_layer (nn.Module): Activation layer.
49
+ use_abs_pos (bool): If True, use absolute positional embeddings.
50
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
51
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
52
+ window_size (int): Window size for window attention blocks.
53
+ global_attn_indexes (list): Indexes for blocks using global attention.
54
+ """
55
+ super().__init__()
56
+ self.img_size = img_size
57
+
58
+ self.patch_embed = PatchEmbed(
59
+ kernel_size=(patch_size, patch_size),
60
+ stride=(patch_size, patch_size),
61
+ in_chans=in_chans,
62
+ embed_dim=embed_dim,
63
+ )
64
+
65
+ self.pos_embed: Optional[nn.Parameter] = None
66
+ if use_abs_pos:
67
+ # Initialize absolute positional embedding with pretrain image size.
68
+ self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
69
+
70
+ self.blocks = nn.ModuleList()
71
+ for i in range(depth):
72
+ block = Block(
73
+ dim=embed_dim,
74
+ num_heads=num_heads,
75
+ mlp_ratio=mlp_ratio,
76
+ qkv_bias=qkv_bias,
77
+ norm_layer=norm_layer,
78
+ act_layer=act_layer,
79
+ use_rel_pos=use_rel_pos,
80
+ rel_pos_zero_init=rel_pos_zero_init,
81
+ window_size=window_size if i not in global_attn_indexes else 0,
82
+ input_size=(img_size // patch_size, img_size // patch_size),
83
+ )
84
+ self.blocks.append(block)
85
+
86
+ self.neck = nn.Sequential(
87
+ nn.Conv2d(
88
+ embed_dim,
89
+ out_chans,
90
+ kernel_size=1,
91
+ bias=False,
92
+ ),
93
+ LayerNorm2d(out_chans),
94
+ nn.Conv2d(
95
+ out_chans,
96
+ out_chans,
97
+ kernel_size=3,
98
+ padding=1,
99
+ bias=False,
100
+ ),
101
+ LayerNorm2d(out_chans),
102
+ )
103
+
104
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
105
+ x = self.patch_embed(x)
106
+ if self.pos_embed is not None:
107
+ x = x + self.pos_embed
108
+
109
+ for blk in self.blocks:
110
+ x = blk(x)
111
+
112
+ x = self.neck(x.permute(0, 3, 1, 2))
113
+
114
+ return x
115
+
116
+
117
+ class Block(nn.Module):
118
+ """Transformer blocks with support of window attention and residual propagation blocks"""
119
+
120
+ def __init__(
121
+ self,
122
+ dim: int,
123
+ num_heads: int,
124
+ mlp_ratio: float = 4.0,
125
+ qkv_bias: bool = True,
126
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
127
+ act_layer: Type[nn.Module] = nn.GELU,
128
+ use_rel_pos: bool = False,
129
+ rel_pos_zero_init: bool = True,
130
+ window_size: int = 0,
131
+ input_size: Optional[Tuple[int, int]] = None,
132
+ ) -> None:
133
+ """
134
+ Args:
135
+ dim (int): Number of input channels.
136
+ num_heads (int): Number of attention heads in each ViT block.
137
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
138
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
139
+ norm_layer (nn.Module): Normalization layer.
140
+ act_layer (nn.Module): Activation layer.
141
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
142
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
143
+ window_size (int): Window size for window attention blocks. If it equals 0, then
144
+ use global attention.
145
+ input_size (int or None): Input resolution for calculating the relative positional
146
+ parameter size.
147
+ """
148
+ super().__init__()
149
+ self.norm1 = norm_layer(dim)
150
+ self.attn = Attention(
151
+ dim,
152
+ num_heads=num_heads,
153
+ qkv_bias=qkv_bias,
154
+ use_rel_pos=use_rel_pos,
155
+ rel_pos_zero_init=rel_pos_zero_init,
156
+ input_size=input_size if window_size == 0 else (window_size, window_size),
157
+ )
158
+
159
+ self.norm2 = norm_layer(dim)
160
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
161
+
162
+ self.window_size = window_size
163
+
164
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
165
+ shortcut = x
166
+ x = self.norm1(x)
167
+ # Window partition
168
+ if self.window_size > 0:
169
+ H, W = x.shape[1], x.shape[2]
170
+ x, pad_hw = window_partition(x, self.window_size)
171
+
172
+ x = self.attn(x)
173
+ # Reverse window partition
174
+ if self.window_size > 0:
175
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
176
+
177
+ x = shortcut + x
178
+ x = x + self.mlp(self.norm2(x))
179
+
180
+ return x
181
+
182
+
183
+ class Attention(nn.Module):
184
+ """Multi-head Attention block with relative position embeddings."""
185
+
186
+ def __init__(
187
+ self,
188
+ dim: int,
189
+ num_heads: int = 8,
190
+ qkv_bias: bool = True,
191
+ use_rel_pos: bool = False,
192
+ rel_pos_zero_init: bool = True,
193
+ input_size: Optional[Tuple[int, int]] = None,
194
+ ) -> None:
195
+ """
196
+ Args:
197
+ dim (int): Number of input channels.
198
+ num_heads (int): Number of attention heads.
199
+ qkv_bias (bool: If True, add a learnable bias to query, key, value.
200
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
201
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
202
+ input_size (int or None): Input resolution for calculating the relative positional
203
+ parameter size.
204
+ """
205
+ super().__init__()
206
+ self.num_heads = num_heads
207
+ head_dim = dim // num_heads
208
+ self.scale = head_dim ** -0.5
209
+
210
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
211
+ self.proj = nn.Linear(dim, dim)
212
+
213
+ self.use_rel_pos = use_rel_pos
214
+ if self.use_rel_pos:
215
+ assert input_size is not None, "Input size must be provided if using relative positional encoding."
216
+ # initialize relative positional embeddings
217
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
218
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
219
+
220
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
221
+ B, H, W, _ = x.shape
222
+ # qkv with shape (3, B, nHead, H * W, C)
223
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
224
+ # q, k, v with shape (B * nHead, H * W, C)
225
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
226
+
227
+ attn = (q * self.scale) @ k.transpose(-2, -1)
228
+
229
+ if self.use_rel_pos:
230
+ attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
231
+
232
+ attn = attn.softmax(dim=-1)
233
+ x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
234
+ x = self.proj(x)
235
+
236
+ return x
237
+
238
+
239
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
240
+ """
241
+ Partition into non-overlapping windows with padding if needed.
242
+ Args:
243
+ x (tensor): input tokens with [B, H, W, C].
244
+ window_size (int): window size.
245
+
246
+ Returns:
247
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
248
+ (Hp, Wp): padded height and width before partition
249
+ """
250
+ B, H, W, C = x.shape
251
+
252
+ pad_h = (window_size - H % window_size) % window_size
253
+ pad_w = (window_size - W % window_size) % window_size
254
+ if pad_h > 0 or pad_w > 0:
255
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
256
+ Hp, Wp = H + pad_h, W + pad_w
257
+
258
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
259
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
260
+ return windows, (Hp, Wp)
261
+
262
+
263
+ def window_unpartition(
264
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
265
+ ) -> torch.Tensor:
266
+ """
267
+ Window unpartition into original sequences and removing padding.
268
+ Args:
269
+ x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
270
+ window_size (int): window size.
271
+ pad_hw (Tuple): padded height and width (Hp, Wp).
272
+ hw (Tuple): original height and width (H, W) before padding.
273
+
274
+ Returns:
275
+ x: unpartitioned sequences with [B, H, W, C].
276
+ """
277
+ Hp, Wp = pad_hw
278
+ H, W = hw
279
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
280
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
281
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
282
+
283
+ if Hp > H or Wp > W:
284
+ x = x[:, :H, :W, :].contiguous()
285
+ return x
286
+
287
+
288
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
289
+ """
290
+ Get relative positional embeddings according to the relative positions of
291
+ query and key sizes.
292
+ Args:
293
+ q_size (int): size of query q.
294
+ k_size (int): size of key k.
295
+ rel_pos (Tensor): relative position embeddings (L, C).
296
+
297
+ Returns:
298
+ Extracted positional embeddings according to relative positions.
299
+ """
300
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
301
+ # Interpolate rel pos if needed.
302
+ if rel_pos.shape[0] != max_rel_dist:
303
+ # Interpolate rel pos.
304
+ rel_pos_resized = F.interpolate(
305
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
306
+ size=max_rel_dist,
307
+ mode="linear",
308
+ )
309
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
310
+ else:
311
+ rel_pos_resized = rel_pos
312
+
313
+ # Scale the coords with short length if shapes for q and k are different.
314
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
315
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
316
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
317
+
318
+ return rel_pos_resized[relative_coords.long()]
319
+
320
+
321
+ def add_decomposed_rel_pos(
322
+ attn: torch.Tensor,
323
+ q: torch.Tensor,
324
+ rel_pos_h: torch.Tensor,
325
+ rel_pos_w: torch.Tensor,
326
+ q_size: Tuple[int, int],
327
+ k_size: Tuple[int, int],
328
+ ) -> torch.Tensor:
329
+ """
330
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
331
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
332
+ Args:
333
+ attn (Tensor): attention map.
334
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
335
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
336
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
337
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
338
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
339
+
340
+ Returns:
341
+ attn (Tensor): attention map with added relative positional embeddings.
342
+ """
343
+ q_h, q_w = q_size
344
+ k_h, k_w = k_size
345
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
346
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
347
+
348
+ B, _, dim = q.shape
349
+ r_q = q.reshape(B, q_h, q_w, dim)
350
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
351
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
352
+
353
+ attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
354
+ B, q_h * q_w, k_h * k_w
355
+ )
356
+
357
+ return attn
358
+
359
+
360
+ class PatchEmbed(nn.Module):
361
+ """
362
+ Image to Patch Embedding.
363
+ """
364
+
365
+ def __init__(
366
+ self,
367
+ kernel_size: Tuple[int, int] = (16, 16),
368
+ stride: Tuple[int, int] = (16, 16),
369
+ padding: Tuple[int, int] = (0, 0),
370
+ in_chans: int = 3,
371
+ embed_dim: int = 768,
372
+ ) -> None:
373
+ """
374
+ Args:
375
+ kernel_size (Tuple): kernel size of the projection layer.
376
+ stride (Tuple): stride of the projection layer.
377
+ padding (Tuple): padding size of the projection layer.
378
+ in_chans (int): Number of input image channels.
379
+ embed_dim (int): embed_dim (int): Patch embedding dimension.
380
+ """
381
+ super().__init__()
382
+
383
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
384
+
385
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
386
+ x = self.proj(x)
387
+ # B C H W -> B H W C
388
+ x = x.permute(0, 2, 3, 1)
389
+ return x
metaseg/modeling/mask_decoder.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import List, Tuple, Type
8
+
9
+ import torch
10
+ from torch import nn
11
+ from torch.nn import functional as F
12
+
13
+ from metaseg.modeling.common import LayerNorm2d
14
+
15
+
16
+ class MaskDecoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ *,
20
+ transformer_dim: int,
21
+ transformer: nn.Module,
22
+ num_multimask_outputs: int = 3,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ iou_head_depth: int = 3,
25
+ iou_head_hidden_dim: int = 256,
26
+ ) -> None:
27
+ """
28
+ Predicts masks given an image and prompt embeddings, using a
29
+ tranformer architecture.
30
+
31
+ Arguments:
32
+ transformer_dim (int): the channel dimension of the transformer
33
+ transformer (nn.Module): the transformer used to predict masks
34
+ num_multimask_outputs (int): the number of masks to predict
35
+ when disambiguating masks
36
+ activation (nn.Module): the type of activation to use when
37
+ upscaling masks
38
+ iou_head_depth (int): the depth of the MLP used to predict
39
+ mask quality
40
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
41
+ used to predict mask quality
42
+ """
43
+ super().__init__()
44
+ self.transformer_dim = transformer_dim
45
+ self.transformer = transformer
46
+
47
+ self.num_multimask_outputs = num_multimask_outputs
48
+
49
+ self.iou_token = nn.Embedding(1, transformer_dim)
50
+ self.num_mask_tokens = num_multimask_outputs + 1
51
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
52
+
53
+ self.output_upscaling = nn.Sequential(
54
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
55
+ LayerNorm2d(transformer_dim // 4),
56
+ activation(),
57
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
58
+ activation(),
59
+ )
60
+ self.output_hypernetworks_mlps = nn.ModuleList(
61
+ [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]
62
+ )
63
+
64
+ self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
65
+
66
+ def forward(
67
+ self,
68
+ image_embeddings: torch.Tensor,
69
+ image_pe: torch.Tensor,
70
+ sparse_prompt_embeddings: torch.Tensor,
71
+ dense_prompt_embeddings: torch.Tensor,
72
+ multimask_output: bool,
73
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
74
+ """
75
+ Predict masks given image and prompt embeddings.
76
+
77
+ Arguments:
78
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
79
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
80
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
81
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
82
+ multimask_output (bool): Whether to return multiple masks or a single
83
+ mask.
84
+
85
+ Returns:
86
+ torch.Tensor: batched predicted masks
87
+ torch.Tensor: batched predictions of mask quality
88
+ """
89
+ masks, iou_pred = self.predict_masks(
90
+ image_embeddings=image_embeddings,
91
+ image_pe=image_pe,
92
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
93
+ dense_prompt_embeddings=dense_prompt_embeddings,
94
+ )
95
+
96
+ # Select the correct mask or masks for outptu
97
+ if multimask_output:
98
+ mask_slice = slice(1, None)
99
+ else:
100
+ mask_slice = slice(0, 1)
101
+ masks = masks[:, mask_slice, :, :]
102
+ iou_pred = iou_pred[:, mask_slice]
103
+
104
+ # Prepare output
105
+ return masks, iou_pred
106
+
107
+ def predict_masks(
108
+ self,
109
+ image_embeddings: torch.Tensor,
110
+ image_pe: torch.Tensor,
111
+ sparse_prompt_embeddings: torch.Tensor,
112
+ dense_prompt_embeddings: torch.Tensor,
113
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
114
+ """Predicts masks. See 'forward' for more details."""
115
+ # Concatenate output tokens
116
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
117
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
118
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
119
+
120
+ # Expand per-image data in batch direction to be per-mask
121
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
122
+ src = src + dense_prompt_embeddings
123
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
124
+ b, c, h, w = src.shape
125
+
126
+ # Run the transformer
127
+ hs, src = self.transformer(src, pos_src, tokens)
128
+ iou_token_out = hs[:, 0, :]
129
+ mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
130
+
131
+ # Upscale mask embeddings and predict masks using the mask tokens
132
+ src = src.transpose(1, 2).view(b, c, h, w)
133
+ upscaled_embedding = self.output_upscaling(src)
134
+ hyper_in_list: List[torch.Tensor] = []
135
+ for i in range(self.num_mask_tokens):
136
+ hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
137
+ hyper_in = torch.stack(hyper_in_list, dim=1)
138
+ b, c, h, w = upscaled_embedding.shape
139
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
140
+
141
+ # Generate mask quality predictions
142
+ iou_pred = self.iou_prediction_head(iou_token_out)
143
+
144
+ return masks, iou_pred
145
+
146
+
147
+ # Lightly adapted from
148
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
149
+ class MLP(nn.Module):
150
+ def __init__(
151
+ self,
152
+ input_dim: int,
153
+ hidden_dim: int,
154
+ output_dim: int,
155
+ num_layers: int,
156
+ sigmoid_output: bool = False,
157
+ ) -> None:
158
+ super().__init__()
159
+ self.num_layers = num_layers
160
+ h = [hidden_dim] * (num_layers - 1)
161
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
162
+ self.sigmoid_output = sigmoid_output
163
+
164
+ def forward(self, x):
165
+ for i, layer in enumerate(self.layers):
166
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
167
+ if self.sigmoid_output:
168
+ x = F.sigmoid(x)
169
+ return x
metaseg/modeling/prompt_encoder.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Any, Optional, Tuple, Type
8
+
9
+ import numpy as np
10
+ import torch
11
+ from torch import nn
12
+
13
+ from metaseg.modeling.common import LayerNorm2d
14
+
15
+
16
+ class PromptEncoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ embed_dim: int,
20
+ image_embedding_size: Tuple[int, int],
21
+ input_image_size: Tuple[int, int],
22
+ mask_in_chans: int,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ ) -> None:
25
+ """
26
+ Encodes prompts for input to SAM's mask decoder.
27
+
28
+ Arguments:
29
+ embed_dim (int): The prompts' embedding dimension
30
+ image_embedding_size (tuple(int, int)): The spatial size of the
31
+ image embedding, as (H, W).
32
+ input_image_size (int): The padded size of the image as input
33
+ to the image encoder, as (H, W).
34
+ mask_in_chans (int): The number of hidden channels used for
35
+ encoding input masks.
36
+ activation (nn.Module): The activation to use when encoding
37
+ input masks.
38
+ """
39
+ super().__init__()
40
+ self.embed_dim = embed_dim
41
+ self.input_image_size = input_image_size
42
+ self.image_embedding_size = image_embedding_size
43
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
44
+
45
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
46
+ point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
47
+ self.point_embeddings = nn.ModuleList(point_embeddings)
48
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
49
+
50
+ self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
51
+ self.mask_downscaling = nn.Sequential(
52
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
53
+ LayerNorm2d(mask_in_chans // 4),
54
+ activation(),
55
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
56
+ LayerNorm2d(mask_in_chans),
57
+ activation(),
58
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
59
+ )
60
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
61
+
62
+ def get_dense_pe(self) -> torch.Tensor:
63
+ """
64
+ Returns the positional encoding used to encode point prompts,
65
+ applied to a dense set of points the shape of the image encoding.
66
+
67
+ Returns:
68
+ torch.Tensor: Positional encoding with shape
69
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
70
+ """
71
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
72
+
73
+ def _embed_points(
74
+ self,
75
+ points: torch.Tensor,
76
+ labels: torch.Tensor,
77
+ pad: bool,
78
+ ) -> torch.Tensor:
79
+ """Embeds point prompts."""
80
+ points = points + 0.5 # Shift to center of pixel
81
+ if pad:
82
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
83
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
84
+ points = torch.cat([points, padding_point], dim=1)
85
+ labels = torch.cat([labels, padding_label], dim=1)
86
+ point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
87
+ point_embedding[labels == -1] = 0.0
88
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
89
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
90
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
91
+ return point_embedding
92
+
93
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
94
+ """Embeds box prompts."""
95
+ boxes = boxes + 0.5 # Shift to center of pixel
96
+ coords = boxes.reshape(-1, 2, 2)
97
+ corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
98
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
99
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
100
+ return corner_embedding
101
+
102
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
103
+ """Embeds mask inputs."""
104
+ mask_embedding = self.mask_downscaling(masks)
105
+ return mask_embedding
106
+
107
+ def _get_batch_size(
108
+ self,
109
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
110
+ boxes: Optional[torch.Tensor],
111
+ masks: Optional[torch.Tensor],
112
+ ) -> int:
113
+ """
114
+ Gets the batch size of the output given the batch size of the input prompts.
115
+ """
116
+ if points is not None:
117
+ return points[0].shape[0]
118
+ elif boxes is not None:
119
+ return boxes.shape[0]
120
+ elif masks is not None:
121
+ return masks.shape[0]
122
+ else:
123
+ return 1
124
+
125
+ def _get_device(self) -> torch.device:
126
+ return self.point_embeddings[0].weight.device
127
+
128
+ def forward(
129
+ self,
130
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
131
+ boxes: Optional[torch.Tensor],
132
+ masks: Optional[torch.Tensor],
133
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
134
+ """
135
+ Embeds different types of prompts, returning both sparse and dense
136
+ embeddings.
137
+
138
+ Arguments:
139
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
140
+ and labels to embed.
141
+ boxes (torch.Tensor or none): boxes to embed
142
+ masks (torch.Tensor or none): masks to embed
143
+
144
+ Returns:
145
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
146
+ BxNx(embed_dim), where N is determined by the number of input points
147
+ and boxes.
148
+ torch.Tensor: dense embeddings for the masks, in the shape
149
+ Bx(embed_dim)x(embed_H)x(embed_W)
150
+ """
151
+ bs = self._get_batch_size(points, boxes, masks)
152
+ sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
153
+ if points is not None:
154
+ coords, labels = points
155
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
156
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
157
+ if boxes is not None:
158
+ box_embeddings = self._embed_boxes(boxes)
159
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
160
+
161
+ if masks is not None:
162
+ dense_embeddings = self._embed_masks(masks)
163
+ else:
164
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
165
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
166
+ )
167
+
168
+ return sparse_embeddings, dense_embeddings
169
+
170
+
171
+ class PositionEmbeddingRandom(nn.Module):
172
+ """
173
+ Positional encoding using random spatial frequencies.
174
+ """
175
+
176
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
177
+ super().__init__()
178
+ if scale is None or scale <= 0.0:
179
+ scale = 1.0
180
+ self.register_buffer(
181
+ "positional_encoding_gaussian_matrix",
182
+ scale * torch.randn((2, num_pos_feats)),
183
+ )
184
+
185
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
186
+ """Positionally encode points that are normalized to [0,1]."""
187
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
188
+ coords = 2 * coords - 1
189
+ coords = coords @ self.positional_encoding_gaussian_matrix
190
+ coords = 2 * np.pi * coords
191
+ # outputs d_1 x ... x d_n x C shape
192
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
193
+
194
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
195
+ """Generate positional encoding for a grid of the specified size."""
196
+ h, w = size
197
+ device: Any = self.positional_encoding_gaussian_matrix.device
198
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
199
+ y_embed = grid.cumsum(dim=0) - 0.5
200
+ x_embed = grid.cumsum(dim=1) - 0.5
201
+ y_embed = y_embed / h
202
+ x_embed = x_embed / w
203
+
204
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
205
+ return pe.permute(2, 0, 1) # C x H x W
206
+
207
+ def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
208
+ """Positionally encode points that are not normalized to [0,1]."""
209
+ coords = coords_input.clone()
210
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
211
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
212
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
metaseg/modeling/sam.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Any, Dict, List, Tuple
8
+
9
+ import torch
10
+ from torch import nn
11
+ from torch.nn import functional as F
12
+
13
+ from metaseg.modeling.image_encoder import ImageEncoderViT
14
+ from metaseg.modeling.mask_decoder import MaskDecoder
15
+ from metaseg.modeling.prompt_encoder import PromptEncoder
16
+
17
+
18
+ class Sam(nn.Module):
19
+ mask_threshold: float = 0.0
20
+ image_format: str = "RGB"
21
+
22
+ def __init__(
23
+ self,
24
+ image_encoder: ImageEncoderViT,
25
+ prompt_encoder: PromptEncoder,
26
+ mask_decoder: MaskDecoder,
27
+ pixel_mean: List[float] = [123.675, 116.28, 103.53],
28
+ pixel_std: List[float] = [58.395, 57.12, 57.375],
29
+ ) -> None:
30
+ """
31
+ SAM predicts object masks from an image and input prompts.
32
+
33
+ Arguments:
34
+ image_encoder (ImageEncoderViT): The backbone used to encode the
35
+ image into image embeddings that allow for efficient mask prediction.
36
+ prompt_encoder (PromptEncoder): Encodes various types of input prompts.
37
+ mask_decoder (MaskDecoder): Predicts masks from the image embeddings
38
+ and encoded prompts.
39
+ pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
40
+ pixel_std (list(float)): Std values for normalizing pixels in the input image.
41
+ """
42
+ super().__init__()
43
+ self.image_encoder = image_encoder
44
+ self.prompt_encoder = prompt_encoder
45
+ self.mask_decoder = mask_decoder
46
+ self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
47
+ self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
48
+
49
+ @property
50
+ def device(self) -> Any:
51
+ return self.pixel_mean.device
52
+
53
+ @torch.no_grad()
54
+ def forward(
55
+ self,
56
+ batched_input: List[Dict[str, Any]],
57
+ multimask_output: bool,
58
+ ) -> List[Dict[str, torch.Tensor]]:
59
+ """
60
+ Predicts masks end-to-end from provided images and prompts.
61
+ If prompts are not known in advance, using SamPredictor is
62
+ recommended over calling the model directly.
63
+
64
+ Arguments:
65
+ batched_input (list(dict)): A list over input images, each a
66
+ dictionary with the following keys. A prompt key can be
67
+ excluded if it is not present.
68
+ 'image': The image as a torch tensor in 3xHxW format,
69
+ already transformed for input to the model.
70
+ 'original_size': (tuple(int, int)) The original size of
71
+ the image before transformation, as (H, W).
72
+ 'point_coords': (torch.Tensor) Batched point prompts for
73
+ this image, with shape BxNx2. Already transformed to the
74
+ input frame of the model.
75
+ 'point_labels': (torch.Tensor) Batched labels for point prompts,
76
+ with shape BxN.
77
+ 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
78
+ Already transformed to the input frame of the model.
79
+ 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
80
+ in the form Bx1xHxW.
81
+ multimask_output (bool): Whether the model should predict multiple
82
+ disambiguating masks, or return a single mask.
83
+
84
+ Returns:
85
+ (list(dict)): A list over input images, where each element is
86
+ as dictionary with the following keys.
87
+ 'masks': (torch.Tensor) Batched binary mask predictions,
88
+ with shape BxCxHxW, where B is the number of input promts,
89
+ C is determiend by multimask_output, and (H, W) is the
90
+ original size of the image.
91
+ 'iou_predictions': (torch.Tensor) The model's predictions
92
+ of mask quality, in shape BxC.
93
+ 'low_res_logits': (torch.Tensor) Low resolution logits with
94
+ shape BxCxHxW, where H=W=256. Can be passed as mask input
95
+ to subsequent iterations of prediction.
96
+ """
97
+ input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
98
+ image_embeddings = self.image_encoder(input_images)
99
+
100
+ outputs = []
101
+ for image_record, curr_embedding in zip(batched_input, image_embeddings):
102
+ if "point_coords" in image_record:
103
+ points = (image_record["point_coords"], image_record["point_labels"])
104
+ else:
105
+ points = None
106
+ sparse_embeddings, dense_embeddings = self.prompt_encoder(
107
+ points=points,
108
+ boxes=image_record.get("boxes", None),
109
+ masks=image_record.get("mask_inputs", None),
110
+ )
111
+ low_res_masks, iou_predictions = self.mask_decoder(
112
+ image_embeddings=curr_embedding.unsqueeze(0),
113
+ image_pe=self.prompt_encoder.get_dense_pe(),
114
+ sparse_prompt_embeddings=sparse_embeddings,
115
+ dense_prompt_embeddings=dense_embeddings,
116
+ multimask_output=multimask_output,
117
+ )
118
+ masks = self.postprocess_masks(
119
+ low_res_masks,
120
+ input_size=image_record["image"].shape[-2:],
121
+ original_size=image_record["original_size"],
122
+ )
123
+ masks = masks > self.mask_threshold
124
+ outputs.append(
125
+ {
126
+ "masks": masks,
127
+ "iou_predictions": iou_predictions,
128
+ "low_res_logits": low_res_masks,
129
+ }
130
+ )
131
+ return outputs
132
+
133
+ def postprocess_masks(
134
+ self,
135
+ masks: torch.Tensor,
136
+ input_size: Tuple[int, ...],
137
+ original_size: Tuple[int, ...],
138
+ ) -> torch.Tensor:
139
+ """
140
+ Remove padding and upscale masks to the original image size.
141
+
142
+ Arguments:
143
+ masks (torch.Tensor): Batched masks from the mask_decoder,
144
+ in BxCxHxW format.
145
+ input_size (tuple(int, int)): The size of the image input to the
146
+ model, in (H, W) format. Used to remove padding.
147
+ original_size (tuple(int, int)): The original size of the image
148
+ before resizing for input to the model, in (H, W) format.
149
+
150
+ Returns:
151
+ (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
152
+ is given by original_size.
153
+ """
154
+ masks = F.interpolate(
155
+ masks,
156
+ (self.image_encoder.img_size, self.image_encoder.img_size),
157
+ mode="bilinear",
158
+ align_corners=False,
159
+ )
160
+ masks = masks[..., : input_size[0], : input_size[1]]
161
+ masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
162
+ return masks
163
+
164
+ def preprocess(self, x: torch.Tensor) -> torch.Tensor:
165
+ """Normalize pixel values and pad to a square input."""
166
+ # Normalize colors
167
+ x = (x - self.pixel_mean) / self.pixel_std
168
+
169
+ # Pad
170
+ h, w = x.shape[-2:]
171
+ padh = self.image_encoder.img_size - h
172
+ padw = self.image_encoder.img_size - w
173
+ x = F.pad(x, (0, padw, 0, padh))
174
+ return x
metaseg/modeling/transformer.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from typing import Tuple, Type
9
+
10
+ import torch
11
+ from torch import Tensor, nn
12
+
13
+ from metaseg.modeling.common import MLPBlock
14
+
15
+
16
+ class TwoWayTransformer(nn.Module):
17
+ def __init__(
18
+ self,
19
+ depth: int,
20
+ embedding_dim: int,
21
+ num_heads: int,
22
+ mlp_dim: int,
23
+ activation: Type[nn.Module] = nn.ReLU,
24
+ attention_downsample_rate: int = 2,
25
+ ) -> None:
26
+ """
27
+ A transformer decoder that attends to an input image using
28
+ queries whose positional embedding is supplied.
29
+
30
+ Args:
31
+ depth (int): number of layers in the transformer
32
+ embedding_dim (int): the channel dimension for the input embeddings
33
+ num_heads (int): the number of heads for multihead attention. Must
34
+ divide embedding_dim
35
+ mlp_dim (int): the channel dimension internal to the MLP block
36
+ activation (nn.Module): the activation to use in the MLP block
37
+ """
38
+ super().__init__()
39
+ self.depth = depth
40
+ self.embedding_dim = embedding_dim
41
+ self.num_heads = num_heads
42
+ self.mlp_dim = mlp_dim
43
+ self.layers = nn.ModuleList()
44
+
45
+ for i in range(depth):
46
+ self.layers.append(
47
+ TwoWayAttentionBlock(
48
+ embedding_dim=embedding_dim,
49
+ num_heads=num_heads,
50
+ mlp_dim=mlp_dim,
51
+ activation=activation,
52
+ attention_downsample_rate=attention_downsample_rate,
53
+ skip_first_layer_pe=(i == 0),
54
+ )
55
+ )
56
+
57
+ self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
58
+ self.norm_final_attn = nn.LayerNorm(embedding_dim)
59
+
60
+ def forward(
61
+ self,
62
+ image_embedding: Tensor,
63
+ image_pe: Tensor,
64
+ point_embedding: Tensor,
65
+ ) -> Tuple[Tensor, Tensor]:
66
+ """
67
+ Args:
68
+ image_embedding (torch.Tensor): image to attend to. Should be shape
69
+ B x embedding_dim x h x w for any h and w.
70
+ image_pe (torch.Tensor): the positional encoding to add to the image. Must
71
+ have the same shape as image_embedding.
72
+ point_embedding (torch.Tensor): the embedding to add to the query points.
73
+ Must have shape B x N_points x embedding_dim for any N_points.
74
+
75
+ Returns:
76
+ torch.Tensor: the processed point_embedding
77
+ torch.Tensor: the processed image_embedding
78
+ """
79
+ # BxCxHxW -> BxHWxC == B x N_image_tokens x C
80
+ bs, c, h, w = image_embedding.shape
81
+ image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
82
+ image_pe = image_pe.flatten(2).permute(0, 2, 1)
83
+
84
+ # Prepare queries
85
+ queries = point_embedding
86
+ keys = image_embedding
87
+
88
+ # Apply transformer blocks and final layernorm
89
+ for layer in self.layers:
90
+ queries, keys = layer(
91
+ queries=queries,
92
+ keys=keys,
93
+ query_pe=point_embedding,
94
+ key_pe=image_pe,
95
+ )
96
+
97
+ # Apply the final attenion layer from the points to the image
98
+ q = queries + point_embedding
99
+ k = keys + image_pe
100
+ attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
101
+ queries = queries + attn_out
102
+ queries = self.norm_final_attn(queries)
103
+
104
+ return queries, keys
105
+
106
+
107
+ class TwoWayAttentionBlock(nn.Module):
108
+ def __init__(
109
+ self,
110
+ embedding_dim: int,
111
+ num_heads: int,
112
+ mlp_dim: int = 2048,
113
+ activation: Type[nn.Module] = nn.ReLU,
114
+ attention_downsample_rate: int = 2,
115
+ skip_first_layer_pe: bool = False,
116
+ ) -> None:
117
+ """
118
+ A transformer block with four layers: (1) self-attention of sparse
119
+ inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
120
+ block on sparse inputs, and (4) cross attention of dense inputs to sparse
121
+ inputs.
122
+
123
+ Arguments:
124
+ embedding_dim (int): the channel dimension of the embeddings
125
+ num_heads (int): the number of heads in the attention layers
126
+ mlp_dim (int): the hidden dimension of the mlp block
127
+ activation (nn.Module): the activation of the mlp block
128
+ skip_first_layer_pe (bool): skip the PE on the first layer
129
+ """
130
+ super().__init__()
131
+ self.self_attn = Attention(embedding_dim, num_heads)
132
+ self.norm1 = nn.LayerNorm(embedding_dim)
133
+
134
+ self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
135
+ self.norm2 = nn.LayerNorm(embedding_dim)
136
+
137
+ self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
138
+ self.norm3 = nn.LayerNorm(embedding_dim)
139
+
140
+ self.norm4 = nn.LayerNorm(embedding_dim)
141
+ self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
142
+
143
+ self.skip_first_layer_pe = skip_first_layer_pe
144
+
145
+ def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
146
+ # Self attention block
147
+ if self.skip_first_layer_pe:
148
+ queries = self.self_attn(q=queries, k=queries, v=queries)
149
+ else:
150
+ q = queries + query_pe
151
+ attn_out = self.self_attn(q=q, k=q, v=queries)
152
+ queries = queries + attn_out
153
+ queries = self.norm1(queries)
154
+
155
+ # Cross attention block, tokens attending to image embedding
156
+ q = queries + query_pe
157
+ k = keys + key_pe
158
+ attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
159
+ queries = queries + attn_out
160
+ queries = self.norm2(queries)
161
+
162
+ # MLP block
163
+ mlp_out = self.mlp(queries)
164
+ queries = queries + mlp_out
165
+ queries = self.norm3(queries)
166
+
167
+ # Cross attention block, image embedding attending to tokens
168
+ q = queries + query_pe
169
+ k = keys + key_pe
170
+ attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
171
+ keys = keys + attn_out
172
+ keys = self.norm4(keys)
173
+
174
+ return queries, keys
175
+
176
+
177
+ class Attention(nn.Module):
178
+ """
179
+ An attention layer that allows for downscaling the size of the embedding
180
+ after projection to queries, keys, and values.
181
+ """
182
+
183
+ def __init__(
184
+ self,
185
+ embedding_dim: int,
186
+ num_heads: int,
187
+ downsample_rate: int = 1,
188
+ ) -> None:
189
+ super().__init__()
190
+ self.embedding_dim = embedding_dim
191
+ self.internal_dim = embedding_dim // downsample_rate
192
+ self.num_heads = num_heads
193
+ assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
194
+
195
+ self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
196
+ self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
197
+ self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
198
+ self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
199
+
200
+ def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
201
+ b, n, c = x.shape
202
+ x = x.reshape(b, n, num_heads, c // num_heads)
203
+ return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
204
+
205
+ def _recombine_heads(self, x: Tensor) -> Tensor:
206
+ b, n_heads, n_tokens, c_per_head = x.shape
207
+ x = x.transpose(1, 2)
208
+ return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
209
+
210
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
211
+ # Input projections
212
+ q = self.q_proj(q)
213
+ k = self.k_proj(k)
214
+ v = self.v_proj(v)
215
+
216
+ # Separate into heads
217
+ q = self._separate_heads(q, self.num_heads)
218
+ k = self._separate_heads(k, self.num_heads)
219
+ v = self._separate_heads(v, self.num_heads)
220
+
221
+ # Attention
222
+ _, _, _, c_per_head = q.shape
223
+ attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
224
+ attn = attn / math.sqrt(c_per_head)
225
+ attn = torch.softmax(attn, dim=-1)
226
+
227
+ # Get output
228
+ out = attn @ v
229
+ out = self._recombine_heads(out)
230
+ out = self.out_proj(out)
231
+
232
+ return out
metaseg/predictor.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Optional, Tuple
8
+
9
+ import numpy as np
10
+ import torch
11
+
12
+ from metaseg.modeling import Sam
13
+ from metaseg.utils.transforms import ResizeLongestSide
14
+
15
+
16
+ class SamPredictor:
17
+ def __init__(
18
+ self,
19
+ sam_model: Sam,
20
+ ) -> None:
21
+ """
22
+ Uses SAM to calculate the image embedding for an image, and then
23
+ allow repeated, efficient mask prediction given prompts.
24
+
25
+ Arguments:
26
+ sam_model (Sam): The model to use for mask prediction.
27
+ """
28
+ super().__init__()
29
+ self.model = sam_model
30
+ self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
31
+ self.reset_image()
32
+
33
+ def set_image(
34
+ self,
35
+ image: np.ndarray,
36
+ image_format: str = "RGB",
37
+ ) -> None:
38
+ """
39
+ Calculates the image embeddings for the provided image, allowing
40
+ masks to be predicted with the 'predict' method.
41
+
42
+ Arguments:
43
+ image (np.ndarray): The image for calculating masks. Expects an
44
+ image in HWC uint8 format, with pixel values in [0, 255].
45
+ image_format (str): The color format of the image, in ['RGB', 'BGR'].
46
+ """
47
+ assert image_format in [
48
+ "RGB",
49
+ "BGR",
50
+ ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
51
+ if image_format != self.model.image_format:
52
+ image = image[..., ::-1]
53
+
54
+ # Transform the image to the form expected by the model
55
+ input_image = self.transform.apply_image(image)
56
+ input_image_torch = torch.as_tensor(input_image, device=self.device)
57
+ input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
58
+
59
+ self.set_torch_image(input_image_torch, image.shape[:2])
60
+
61
+ @torch.no_grad()
62
+ def set_torch_image(
63
+ self,
64
+ transformed_image: torch.Tensor,
65
+ original_image_size: Tuple[int, ...],
66
+ ) -> None:
67
+ """
68
+ Calculates the image embeddings for the provided image, allowing
69
+ masks to be predicted with the 'predict' method. Expects the input
70
+ image to be already transformed to the format expected by the model.
71
+
72
+ Arguments:
73
+ transformed_image (torch.Tensor): The input image, with shape
74
+ 1x3xHxW, which has been transformed with ResizeLongestSide.
75
+ original_image_size (tuple(int, int)): The size of the image
76
+ before transformation, in (H, W) format.
77
+ """
78
+ assert (
79
+ len(transformed_image.shape) == 4
80
+ and transformed_image.shape[1] == 3
81
+ and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
82
+ ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
83
+ self.reset_image()
84
+
85
+ self.original_size = original_image_size
86
+ self.input_size = tuple(transformed_image.shape[-2:])
87
+ input_image = self.model.preprocess(transformed_image)
88
+ self.features = self.model.image_encoder(input_image)
89
+ self.is_image_set = True
90
+
91
+ def predict(
92
+ self,
93
+ point_coords: Optional[np.ndarray] = None,
94
+ point_labels: Optional[np.ndarray] = None,
95
+ box: Optional[np.ndarray] = None,
96
+ mask_input: Optional[np.ndarray] = None,
97
+ multimask_output: bool = True,
98
+ return_logits: bool = False,
99
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
100
+ """
101
+ Predict masks for the given input prompts, using the currently set image.
102
+
103
+ Arguments:
104
+ point_coords (np.ndarray or None): A Nx2 array of point prompts to the
105
+ model. Each point is in (X,Y) in pixels.
106
+ point_labels (np.ndarray or None): A length N array of labels for the
107
+ point prompts. 1 indicates a foreground point and 0 indicates a
108
+ background point.
109
+ box (np.ndarray or None): A length 4 array given a box prompt to the
110
+ model, in XYXY format.
111
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
112
+ coming from a previous prediction iteration. Has form 1xHxW, where
113
+ for SAM, H=W=256.
114
+ multimask_output (bool): If true, the model will return three masks.
115
+ For ambiguous input prompts (such as a single click), this will often
116
+ produce better masks than a single prediction. If only a single
117
+ mask is needed, the model's predicted quality score can be used
118
+ to select the best mask. For non-ambiguous prompts, such as multiple
119
+ input prompts, multimask_output=False can give better results.
120
+ return_logits (bool): If true, returns un-thresholded masks logits
121
+ instead of a binary mask.
122
+
123
+ Returns:
124
+ (np.ndarray): The output masks in CxHxW format, where C is the
125
+ number of masks, and (H, W) is the original image size.
126
+ (np.ndarray): An array of length C containing the model's
127
+ predictions for the quality of each mask.
128
+ (np.ndarray): An array of shape CxHxW, where C is the number
129
+ of masks and H=W=256. These low resolution logits can be passed to
130
+ a subsequent iteration as mask input.
131
+ """
132
+ if not self.is_image_set:
133
+ raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
134
+
135
+ # Transform input prompts
136
+ coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
137
+ if point_coords is not None:
138
+ assert point_labels is not None, "point_labels must be supplied if point_coords is supplied."
139
+ point_coords = self.transform.apply_coords(point_coords, self.original_size)
140
+ coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
141
+ labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
142
+ coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
143
+ if box is not None:
144
+ box = self.transform.apply_boxes(box, self.original_size)
145
+ box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
146
+ box_torch = box_torch[None, :]
147
+ if mask_input is not None:
148
+ mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
149
+ mask_input_torch = mask_input_torch[None, :, :, :]
150
+
151
+ masks, iou_predictions, low_res_masks = self.predict_torch(
152
+ coords_torch,
153
+ labels_torch,
154
+ box_torch,
155
+ mask_input_torch,
156
+ multimask_output,
157
+ return_logits=return_logits,
158
+ )
159
+
160
+ masks = masks[0].detach().cpu().numpy()
161
+ iou_predictions = iou_predictions[0].detach().cpu().numpy()
162
+ low_res_masks = low_res_masks[0].detach().cpu().numpy()
163
+ return masks, iou_predictions, low_res_masks
164
+
165
+ @torch.no_grad()
166
+ def predict_torch(
167
+ self,
168
+ point_coords: Optional[torch.Tensor],
169
+ point_labels: Optional[torch.Tensor],
170
+ boxes: Optional[torch.Tensor] = None,
171
+ mask_input: Optional[torch.Tensor] = None,
172
+ multimask_output: bool = True,
173
+ return_logits: bool = False,
174
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
175
+ """
176
+ Predict masks for the given input prompts, using the currently set image.
177
+ Input prompts are batched torch tensors and are expected to already be
178
+ transformed to the input frame using ResizeLongestSide.
179
+
180
+ Arguments:
181
+ point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
182
+ model. Each point is in (X,Y) in pixels.
183
+ point_labels (torch.Tensor or None): A BxN array of labels for the
184
+ point prompts. 1 indicates a foreground point and 0 indicates a
185
+ background point.
186
+ box (np.ndarray or None): A Bx4 array given a box prompt to the
187
+ model, in XYXY format.
188
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
189
+ coming from a previous prediction iteration. Has form Bx1xHxW, where
190
+ for SAM, H=W=256. Masks returned by a previous iteration of the
191
+ predict method do not need further transformation.
192
+ multimask_output (bool): If true, the model will return three masks.
193
+ For ambiguous input prompts (such as a single click), this will often
194
+ produce better masks than a single prediction. If only a single
195
+ mask is needed, the model's predicted quality score can be used
196
+ to select the best mask. For non-ambiguous prompts, such as multiple
197
+ input prompts, multimask_output=False can give better results.
198
+ return_logits (bool): If true, returns un-thresholded masks logits
199
+ instead of a binary mask.
200
+
201
+ Returns:
202
+ (torch.Tensor): The output masks in BxCxHxW format, where C is the
203
+ number of masks, and (H, W) is the original image size.
204
+ (torch.Tensor): An array of shape BxC containing the model's
205
+ predictions for the quality of each mask.
206
+ (torch.Tensor): An array of shape BxCxHxW, where C is the number
207
+ of masks and H=W=256. These low res logits can be passed to
208
+ a subsequent iteration as mask input.
209
+ """
210
+ if not self.is_image_set:
211
+ raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
212
+
213
+ if point_coords is not None:
214
+ points = (point_coords, point_labels)
215
+ else:
216
+ points = None
217
+
218
+ # Embed prompts
219
+ sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
220
+ points=points,
221
+ boxes=boxes,
222
+ masks=mask_input,
223
+ )
224
+
225
+ # Predict masks
226
+ low_res_masks, iou_predictions = self.model.mask_decoder(
227
+ image_embeddings=self.features,
228
+ image_pe=self.model.prompt_encoder.get_dense_pe(),
229
+ sparse_prompt_embeddings=sparse_embeddings,
230
+ dense_prompt_embeddings=dense_embeddings,
231
+ multimask_output=multimask_output,
232
+ )
233
+
234
+ # Upscale the masks to the original image resolution
235
+ masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
236
+
237
+ if not return_logits:
238
+ masks = masks > self.model.mask_threshold
239
+
240
+ return masks, iou_predictions, low_res_masks
241
+
242
+ def get_image_embedding(self) -> torch.Tensor:
243
+ """
244
+ Returns the image embeddings for the currently set image, with
245
+ shape 1xCxHxW, where C is the embedding dimension and (H,W) are
246
+ the embedding spatial dimension of SAM (typically C=256, H=W=64).
247
+ """
248
+ if not self.is_image_set:
249
+ raise RuntimeError("An image must be set with .set_image(...) to generate an embedding.")
250
+ assert self.features is not None, "Features must exist if an image has been set."
251
+ return self.features
252
+
253
+ @property
254
+ def device(self) -> torch.device:
255
+ return self.model.device
256
+
257
+ def reset_image(self) -> None:
258
+ """Resets the currently set image."""
259
+ self.is_image_set = False
260
+ self.features = None
261
+ self.orig_h = None
262
+ self.orig_w = None
263
+ self.input_h = None
264
+ self.input_w = None
metaseg/utils/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
metaseg/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (159 Bytes). View file
 
metaseg/utils/__pycache__/amg.cpython-310.pyc ADDED
Binary file (12 kB). View file
 
metaseg/utils/__pycache__/file.cpython-310.pyc ADDED
Binary file (1.16 kB). View file
 
metaseg/utils/__pycache__/transforms.cpython-310.pyc ADDED
Binary file (3.9 kB). View file
 
metaseg/utils/amg.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from copy import deepcopy
9
+ from itertools import product
10
+ from typing import Any, Dict, Generator, ItemsView, List, Tuple
11
+
12
+ import numpy as np
13
+ import torch
14
+
15
+
16
+ class MaskData:
17
+ """
18
+ A structure for storing masks and their related data in batched format.
19
+ Implements basic filtering and concatenation.
20
+ """
21
+
22
+ def __init__(self, **kwargs) -> None:
23
+ for v in kwargs.values():
24
+ assert isinstance(
25
+ v, (list, np.ndarray, torch.Tensor)
26
+ ), "MaskData only supports list, numpy arrays, and torch tensors."
27
+ self._stats = dict(**kwargs)
28
+
29
+ def __setitem__(self, key: str, item: Any) -> None:
30
+ assert isinstance(
31
+ item, (list, np.ndarray, torch.Tensor)
32
+ ), "MaskData only supports list, numpy arrays, and torch tensors."
33
+ self._stats[key] = item
34
+
35
+ def __delitem__(self, key: str) -> None:
36
+ del self._stats[key]
37
+
38
+ def __getitem__(self, key: str) -> Any:
39
+ return self._stats[key]
40
+
41
+ def items(self) -> ItemsView[str, Any]:
42
+ return self._stats.items()
43
+
44
+ def filter(self, keep: torch.Tensor) -> None:
45
+ for k, v in self._stats.items():
46
+ if v is None:
47
+ self._stats[k] = None
48
+ elif isinstance(v, torch.Tensor):
49
+ self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
50
+ elif isinstance(v, np.ndarray):
51
+ self._stats[k] = v[keep.detach().cpu().numpy()]
52
+ elif isinstance(v, list) and keep.dtype == torch.bool:
53
+ self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
54
+ elif isinstance(v, list):
55
+ self._stats[k] = [v[i] for i in keep]
56
+ else:
57
+ raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
58
+
59
+ def cat(self, new_stats: "MaskData") -> None:
60
+ for k, v in new_stats.items():
61
+ if k not in self._stats or self._stats[k] is None:
62
+ self._stats[k] = deepcopy(v)
63
+ elif isinstance(v, torch.Tensor):
64
+ self._stats[k] = torch.cat([self._stats[k], v], dim=0)
65
+ elif isinstance(v, np.ndarray):
66
+ self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
67
+ elif isinstance(v, list):
68
+ self._stats[k] = self._stats[k] + deepcopy(v)
69
+ else:
70
+ raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
71
+
72
+ def to_numpy(self) -> None:
73
+ for k, v in self._stats.items():
74
+ if isinstance(v, torch.Tensor):
75
+ self._stats[k] = v.detach().cpu().numpy()
76
+
77
+
78
+ def is_box_near_crop_edge(
79
+ boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
80
+ ) -> torch.Tensor:
81
+ """Filter masks at the edge of a crop, but not at the edge of the original image."""
82
+ crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
83
+ orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
84
+ boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
85
+ near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
86
+ near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
87
+ near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
88
+ return torch.any(near_crop_edge, dim=1)
89
+
90
+
91
+ def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
92
+ box_xywh = deepcopy(box_xyxy)
93
+ box_xywh[2] = box_xywh[2] - box_xywh[0]
94
+ box_xywh[3] = box_xywh[3] - box_xywh[1]
95
+ return box_xywh
96
+
97
+
98
+ def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
99
+ assert len(args) > 0 and all(
100
+ len(a) == len(args[0]) for a in args
101
+ ), "Batched iteration must have inputs of all the same size."
102
+ n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
103
+ for b in range(n_batches):
104
+ yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
105
+
106
+
107
+ def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
108
+ """
109
+ Encodes masks to an uncompressed RLE, in the format expected by
110
+ pycoco tools.
111
+ """
112
+ # Put in fortran order and flatten h,w
113
+ b, h, w = tensor.shape
114
+ tensor = tensor.permute(0, 2, 1).flatten(1)
115
+
116
+ # Compute change indices
117
+ diff = tensor[:, 1:] ^ tensor[:, :-1]
118
+ change_indices = diff.nonzero()
119
+
120
+ # Encode run length
121
+ out = []
122
+ for i in range(b):
123
+ cur_idxs = change_indices[change_indices[:, 0] == i, 1]
124
+ cur_idxs = torch.cat(
125
+ [
126
+ torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
127
+ cur_idxs + 1,
128
+ torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
129
+ ]
130
+ )
131
+ btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
132
+ counts = [] if tensor[i, 0] == 0 else [0]
133
+ counts.extend(btw_idxs.detach().cpu().tolist())
134
+ out.append({"size": [h, w], "counts": counts})
135
+ return out
136
+
137
+
138
+ def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
139
+ """Compute a binary mask from an uncompressed RLE."""
140
+ h, w = rle["size"]
141
+ mask = np.empty(h * w, dtype=bool)
142
+ idx = 0
143
+ parity = False
144
+ for count in rle["counts"]:
145
+ mask[idx : idx + count] = parity
146
+ idx += count
147
+ parity ^= True
148
+ mask = mask.reshape(w, h)
149
+ return mask.transpose() # Put in C order
150
+
151
+
152
+ def area_from_rle(rle: Dict[str, Any]) -> int:
153
+ return sum(rle["counts"][1::2])
154
+
155
+
156
+ def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
157
+ """
158
+ Computes the stability score for a batch of masks. The stability
159
+ score is the IoU between the binary masks obtained by thresholding
160
+ the predicted mask logits at high and low values.
161
+ """
162
+ # One mask is always contained inside the other.
163
+ # Save memory by preventing unnecesary cast to torch.int64
164
+ intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
165
+ unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
166
+ return intersections / unions
167
+
168
+
169
+ def build_point_grid(n_per_side: int) -> np.ndarray:
170
+ """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
171
+ offset = 1 / (2 * n_per_side)
172
+ points_one_side = np.linspace(offset, 1 - offset, n_per_side)
173
+ points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
174
+ points_y = np.tile(points_one_side[:, None], (1, n_per_side))
175
+ points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
176
+ return points
177
+
178
+
179
+ def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
180
+ """Generates point grids for all crop layers."""
181
+ points_by_layer = []
182
+ for i in range(n_layers + 1):
183
+ n_points = int(n_per_side / (scale_per_layer ** i))
184
+ points_by_layer.append(build_point_grid(n_points))
185
+ return points_by_layer
186
+
187
+
188
+ def generate_crop_boxes(
189
+ im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
190
+ ) -> Tuple[List[List[int]], List[int]]:
191
+ """
192
+ Generates a list of crop boxes of different sizes. Each layer
193
+ has (2**i)**2 boxes for the ith layer.
194
+ """
195
+ crop_boxes, layer_idxs = [], []
196
+ im_h, im_w = im_size
197
+ short_side = min(im_h, im_w)
198
+
199
+ # Original image
200
+ crop_boxes.append([0, 0, im_w, im_h])
201
+ layer_idxs.append(0)
202
+
203
+ def crop_len(orig_len, n_crops, overlap):
204
+ return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
205
+
206
+ for i_layer in range(n_layers):
207
+ n_crops_per_side = 2 ** (i_layer + 1)
208
+ overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
209
+
210
+ crop_w = crop_len(im_w, n_crops_per_side, overlap)
211
+ crop_h = crop_len(im_h, n_crops_per_side, overlap)
212
+
213
+ crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
214
+ crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
215
+
216
+ # Crops in XYWH format
217
+ for x0, y0 in product(crop_box_x0, crop_box_y0):
218
+ box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
219
+ crop_boxes.append(box)
220
+ layer_idxs.append(i_layer + 1)
221
+
222
+ return crop_boxes, layer_idxs
223
+
224
+
225
+ def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
226
+ x0, y0, _, _ = crop_box
227
+ offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
228
+ # Check if boxes has a channel dimension
229
+ if len(boxes.shape) == 3:
230
+ offset = offset.unsqueeze(1)
231
+ return boxes + offset
232
+
233
+
234
+ def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
235
+ x0, y0, _, _ = crop_box
236
+ offset = torch.tensor([[x0, y0]], device=points.device)
237
+ # Check if points has a channel dimension
238
+ if len(points.shape) == 3:
239
+ offset = offset.unsqueeze(1)
240
+ return points + offset
241
+
242
+
243
+ def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
244
+ x0, y0, x1, y1 = crop_box
245
+ if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
246
+ return masks
247
+ # Coordinate transform masks
248
+ pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
249
+ pad = (x0, pad_x - x0, y0, pad_y - y0)
250
+ return torch.nn.functional.pad(masks, pad, value=0)
251
+
252
+
253
+ def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
254
+ """
255
+ Removes small disconnected regions and holes in a mask. Returns the
256
+ mask and an indicator of if the mask has been modified.
257
+ """
258
+ import cv2 # type: ignore
259
+
260
+ assert mode in ["holes", "islands"]
261
+ correct_holes = mode == "holes"
262
+ working_mask = (correct_holes ^ mask).astype(np.uint8)
263
+ n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
264
+ sizes = stats[:, -1][1:] # Row 0 is background label
265
+ small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
266
+ if len(small_regions) == 0:
267
+ return mask, False
268
+ fill_labels = [0] + small_regions
269
+ if not correct_holes:
270
+ fill_labels = [i for i in range(n_labels) if i not in fill_labels]
271
+ # If every region is below threshold, keep largest
272
+ if len(fill_labels) == 0:
273
+ fill_labels = [int(np.argmax(sizes)) + 1]
274
+ mask = np.isin(regions, fill_labels)
275
+ return mask, True
276
+
277
+
278
+ def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
279
+ from pycocotools import mask as mask_utils # type: ignore
280
+
281
+ h, w = uncompressed_rle["size"]
282
+ rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
283
+ rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
284
+ return rle
285
+
286
+
287
+ def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
288
+ """
289
+ Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
290
+ an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
291
+ """
292
+ # torch.max below raises an error on empty inputs, just skip in this case
293
+ if torch.numel(masks) == 0:
294
+ return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
295
+
296
+ # Normalize shape to CxHxW
297
+ shape = masks.shape
298
+ h, w = shape[-2:]
299
+ if len(shape) > 2:
300
+ masks = masks.flatten(0, -3)
301
+ else:
302
+ masks = masks.unsqueeze(0)
303
+
304
+ # Get top and bottom edges
305
+ in_height, _ = torch.max(masks, dim=-1)
306
+ in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
307
+ bottom_edges, _ = torch.max(in_height_coords, dim=-1)
308
+ in_height_coords = in_height_coords + h * (~in_height)
309
+ top_edges, _ = torch.min(in_height_coords, dim=-1)
310
+
311
+ # Get left and right edges
312
+ in_width, _ = torch.max(masks, dim=-2)
313
+ in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
314
+ right_edges, _ = torch.max(in_width_coords, dim=-1)
315
+ in_width_coords = in_width_coords + w * (~in_width)
316
+ left_edges, _ = torch.min(in_width_coords, dim=-1)
317
+
318
+ # If the mask is empty the right edge will be to the left of the left edge.
319
+ # Replace these boxes with [0, 0, 0, 0]
320
+ empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
321
+ out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
322
+ out = out * (~empty_filter).unsqueeze(-1)
323
+
324
+ # Return to original shape
325
+ if len(shape) > 2:
326
+ out = out.reshape(*shape[:-2], 4)
327
+ else:
328
+ out = out[0]
329
+
330
+ return out
metaseg/utils/file.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import urllib.request
3
+
4
+
5
+ def download_model(model_type):
6
+ """
7
+ model_type: str, A string representing the model type. It can be 'vit_h', 'vit_l', or 'vit_b'.
8
+ """
9
+
10
+ # A dictionary containing model types as keys and their respective URLs as values
11
+ model_urls = {
12
+ "vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
13
+ "vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
14
+ "vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
15
+ }
16
+
17
+ # Check if the model file already exists and model_type is in model_urls
18
+ filename = f"{model_type}.pth"
19
+ if not os.path.exists(filename) and model_type in model_urls:
20
+ url = model_urls[model_type]
21
+ print(f"Downloading {model_type} model from {url}...")
22
+ urllib.request.urlretrieve(url, filename)
23
+ print(f"{model_type} model has been successfully downloaded and saved as '{filename}'.")
24
+ elif os.path.exists(filename):
25
+ print(f"{model_type} model already exists as '{filename}'. Skipping download.")
26
+ else:
27
+ raise ValueError("Invalid model type. It should be 'vit_h', 'vit_l', or 'vit_b'.")
28
+
29
+ return filename
30
+
31
+
32
+ download_model("vit_b")
metaseg/utils/onnx.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from typing import Tuple
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ from torch.nn import functional as F
12
+
13
+ from metaseg.modeling import Sam
14
+ from metaseg.utils.amg import calculate_stability_score
15
+
16
+
17
+ class SamOnnxModel(nn.Module):
18
+ """
19
+ This model should not be called directly, but is used in ONNX export.
20
+ It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
21
+ with some functions modified to enable model tracing. Also supports extra
22
+ options controlling what information. See the ONNX export script for details.
23
+ """
24
+
25
+ def __init__(
26
+ self,
27
+ model: Sam,
28
+ return_single_mask: bool,
29
+ use_stability_score: bool = False,
30
+ return_extra_metrics: bool = False,
31
+ ) -> None:
32
+ super().__init__()
33
+ self.mask_decoder = model.mask_decoder
34
+ self.model = model
35
+ self.img_size = model.image_encoder.img_size
36
+ self.return_single_mask = return_single_mask
37
+ self.use_stability_score = use_stability_score
38
+ self.stability_score_offset = 1.0
39
+ self.return_extra_metrics = return_extra_metrics
40
+
41
+ @staticmethod
42
+ def resize_longest_image_size(input_image_size: torch.Tensor, longest_side: int) -> torch.Tensor:
43
+ input_image_size = input_image_size.to(torch.float32)
44
+ scale = longest_side / torch.max(input_image_size)
45
+ transformed_size = scale * input_image_size
46
+ transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
47
+ return transformed_size
48
+
49
+ def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
50
+ point_coords = point_coords + 0.5
51
+ point_coords = point_coords / self.img_size
52
+ point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
53
+ point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
54
+
55
+ point_embedding = point_embedding * (point_labels != -1)
56
+ point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (point_labels == -1)
57
+
58
+ for i in range(self.model.prompt_encoder.num_point_embeddings):
59
+ point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[i].weight * (
60
+ point_labels == i
61
+ )
62
+
63
+ return point_embedding
64
+
65
+ def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
66
+ mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
67
+ mask_embedding = mask_embedding + (1 - has_mask_input) * self.model.prompt_encoder.no_mask_embed.weight.reshape(
68
+ 1, -1, 1, 1
69
+ )
70
+ return mask_embedding
71
+
72
+ def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
73
+ masks = F.interpolate(
74
+ masks,
75
+ size=(self.img_size, self.img_size),
76
+ mode="bilinear",
77
+ align_corners=False,
78
+ )
79
+
80
+ prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size)
81
+ masks = masks[..., : int(prepadded_size[0]), : int(prepadded_size[1])]
82
+
83
+ orig_im_size = orig_im_size.to(torch.int64)
84
+ h, w = orig_im_size[0], orig_im_size[1]
85
+ masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
86
+ return masks
87
+
88
+ def select_masks(
89
+ self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
90
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
91
+ # Determine if we should return the multiclick mask or not from the number of points.
92
+ # The reweighting is used to avoid control flow.
93
+ score_reweight = torch.tensor([[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]).to(
94
+ iou_preds.device
95
+ )
96
+ score = iou_preds + (num_points - 2.5) * score_reweight
97
+ best_idx = torch.argmax(score, dim=1)
98
+ masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
99
+ iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
100
+
101
+ return masks, iou_preds
102
+
103
+ @torch.no_grad()
104
+ def forward(
105
+ self,
106
+ image_embeddings: torch.Tensor,
107
+ point_coords: torch.Tensor,
108
+ point_labels: torch.Tensor,
109
+ mask_input: torch.Tensor,
110
+ has_mask_input: torch.Tensor,
111
+ orig_im_size: torch.Tensor,
112
+ ):
113
+ sparse_embedding = self._embed_points(point_coords, point_labels)
114
+ dense_embedding = self._embed_masks(mask_input, has_mask_input)
115
+
116
+ masks, scores = self.model.mask_decoder.predict_masks(
117
+ image_embeddings=image_embeddings,
118
+ image_pe=self.model.prompt_encoder.get_dense_pe(),
119
+ sparse_prompt_embeddings=sparse_embedding,
120
+ dense_prompt_embeddings=dense_embedding,
121
+ )
122
+
123
+ if self.use_stability_score:
124
+ scores = calculate_stability_score(masks, self.model.mask_threshold, self.stability_score_offset)
125
+
126
+ if self.return_single_mask:
127
+ masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
128
+
129
+ upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
130
+
131
+ if self.return_extra_metrics:
132
+ stability_scores = calculate_stability_score(
133
+ upscaled_masks, self.model.mask_threshold, self.stability_score_offset
134
+ )
135
+ areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
136
+ return upscaled_masks, scores, stability_scores, areas, masks
137
+
138
+ return upscaled_masks, scores, masks
metaseg/utils/transforms.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from copy import deepcopy
8
+ from typing import Tuple
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torch.nn import functional as F
13
+ from torchvision.transforms.functional import resize, to_pil_image # type: ignore
14
+
15
+
16
+ class ResizeLongestSide:
17
+ """
18
+ Resizes images to longest side 'target_length', as well as provides
19
+ methods for resizing coordinates and boxes. Provides methods for
20
+ transforming both numpy array and batched torch tensors.
21
+ """
22
+
23
+ def __init__(self, target_length: int) -> None:
24
+ self.target_length = target_length
25
+
26
+ def apply_image(self, image: np.ndarray) -> np.ndarray:
27
+ """
28
+ Expects a numpy array with shape HxWxC in uint8 format.
29
+ """
30
+ target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
31
+ return np.array(resize(to_pil_image(image), target_size))
32
+
33
+ def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
34
+ """
35
+ Expects a numpy array of length 2 in the final dimension. Requires the
36
+ original image size in (H, W) format.
37
+ """
38
+ old_h, old_w = original_size
39
+ new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
40
+ coords = deepcopy(coords).astype(float)
41
+ coords[..., 0] = coords[..., 0] * (new_w / old_w)
42
+ coords[..., 1] = coords[..., 1] * (new_h / old_h)
43
+ return coords
44
+
45
+ def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
46
+ """
47
+ Expects a numpy array shape Bx4. Requires the original image size
48
+ in (H, W) format.
49
+ """
50
+ boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
51
+ return boxes.reshape(-1, 4)
52
+
53
+ def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
54
+ """
55
+ Expects batched images with shape BxCxHxW and float format. This
56
+ transformation may not exactly match apply_image. apply_image is
57
+ the transformation expected by the model.
58
+ """
59
+ # Expects an image in BCHW format. May not exactly match apply_image.
60
+ target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
61
+ return F.interpolate(image, target_size, mode="bilinear", align_corners=False, antialias=True)
62
+
63
+ def apply_coords_torch(self, coords: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
64
+ """
65
+ Expects a torch tensor with length 2 in the last dimension. Requires the
66
+ original image size in (H, W) format.
67
+ """
68
+ old_h, old_w = original_size
69
+ new_h, new_w = self.get_preprocess_shape(original_size[0], original_size[1], self.target_length)
70
+ coords = deepcopy(coords).to(torch.float)
71
+ coords[..., 0] = coords[..., 0] * (new_w / old_w)
72
+ coords[..., 1] = coords[..., 1] * (new_h / old_h)
73
+ return coords
74
+
75
+ def apply_boxes_torch(self, boxes: torch.Tensor, original_size: Tuple[int, ...]) -> torch.Tensor:
76
+ """
77
+ Expects a torch tensor with shape Bx4. Requires the original image
78
+ size in (H, W) format.
79
+ """
80
+ boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
81
+ return boxes.reshape(-1, 4)
82
+
83
+ @staticmethod
84
+ def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
85
+ """
86
+ Compute the output size given input size and target long side length.
87
+ """
88
+ scale = long_side_length * 1.0 / max(oldh, oldw)
89
+ newh, neww = oldh * scale, oldw * scale
90
+ neww = int(neww + 0.5)
91
+ newh = int(newh + 0.5)
92
+ return (newh, neww)
pyproject.toml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [tool.black]
2
+ line-length = 120
3
+
4
+ [tool.isort]
5
+ line_length = 120
6
+ profile = "black"
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ onnxruntime
2
+ pycocotools
3
+ torch>=1.7
4
+ torchvision>=0.8
5
+
6
+ # code formatting
7
+ black==21.7b0
8
+ flake8==3.9.2
9
+ isort==5.9.2
10
+ click==8.0.4
scripts/amg.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import argparse
8
+ import json
9
+ import os
10
+ from typing import Any, Dict, List
11
+
12
+ import cv2 # type: ignore
13
+
14
+ from metaseg import SamAutomaticMaskGenerator, sam_model_registry
15
+
16
+ parser = argparse.ArgumentParser(
17
+ description=(
18
+ "Runs automatic mask generation on an input image or directory of images, "
19
+ "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
20
+ "as well as pycocotools if saving in RLE format."
21
+ )
22
+ )
23
+
24
+ parser.add_argument(
25
+ "--input",
26
+ type=str,
27
+ required=True,
28
+ help="Path to either a single input image or folder of images.",
29
+ )
30
+
31
+ parser.add_argument(
32
+ "--output",
33
+ type=str,
34
+ required=True,
35
+ help=(
36
+ "Path to the directory where masks will be output. Output will be either a folder "
37
+ "of PNGs per image or a single json with COCO-style masks."
38
+ ),
39
+ )
40
+
41
+ parser.add_argument(
42
+ "--model-type",
43
+ type=str,
44
+ default="default",
45
+ help="The type of model to load, in ['default', 'vit_l', 'vit_b']",
46
+ )
47
+
48
+ parser.add_argument(
49
+ "--checkpoint",
50
+ type=str,
51
+ required=True,
52
+ help="The path to the SAM checkpoint to use for mask generation.",
53
+ )
54
+
55
+ parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.")
56
+
57
+ parser.add_argument(
58
+ "--convert-to-rle",
59
+ action="store_true",
60
+ help=("Save masks as COCO RLEs in a single json instead of as a folder of PNGs. " "Requires pycocotools."),
61
+ )
62
+
63
+ amg_settings = parser.add_argument_group("AMG Settings")
64
+
65
+ amg_settings.add_argument(
66
+ "--points-per-side",
67
+ type=int,
68
+ default=None,
69
+ help="Generate masks by sampling a grid over the image with this many points to a side.",
70
+ )
71
+
72
+ amg_settings.add_argument(
73
+ "--points-per-batch",
74
+ type=int,
75
+ default=None,
76
+ help="How many input points to process simultaneously in one batch.",
77
+ )
78
+
79
+ amg_settings.add_argument(
80
+ "--pred-iou-thresh",
81
+ type=float,
82
+ default=None,
83
+ help="Exclude masks with a predicted score from the model that is lower than this threshold.",
84
+ )
85
+
86
+ amg_settings.add_argument(
87
+ "--stability-score-thresh",
88
+ type=float,
89
+ default=None,
90
+ help="Exclude masks with a stability score lower than this threshold.",
91
+ )
92
+
93
+ amg_settings.add_argument(
94
+ "--stability-score-offset",
95
+ type=float,
96
+ default=None,
97
+ help="Larger values perturb the mask more when measuring stability score.",
98
+ )
99
+
100
+ amg_settings.add_argument(
101
+ "--box-nms-thresh",
102
+ type=float,
103
+ default=None,
104
+ help="The overlap threshold for excluding a duplicate mask.",
105
+ )
106
+
107
+ amg_settings.add_argument(
108
+ "--crop-n-layers",
109
+ type=int,
110
+ default=None,
111
+ help=(
112
+ "If >0, mask generation is run on smaller crops of the image to generate more masks. "
113
+ "The value sets how many different scales to crop at."
114
+ ),
115
+ )
116
+
117
+ amg_settings.add_argument(
118
+ "--crop-nms-thresh",
119
+ type=float,
120
+ default=None,
121
+ help="The overlap threshold for excluding duplicate masks across different crops.",
122
+ )
123
+
124
+ amg_settings.add_argument(
125
+ "--crop-overlap-ratio",
126
+ type=int,
127
+ default=None,
128
+ help="Larger numbers mean image crops will overlap more.",
129
+ )
130
+
131
+ amg_settings.add_argument(
132
+ "--crop-n-points-downscale-factor",
133
+ type=int,
134
+ default=None,
135
+ help="The number of points-per-side in each layer of crop is reduced by this factor.",
136
+ )
137
+
138
+ amg_settings.add_argument(
139
+ "--min-mask-region-area",
140
+ type=int,
141
+ default=None,
142
+ help=(
143
+ "Disconnected mask regions or holes with area smaller than this value "
144
+ "in pixels are removed by postprocessing."
145
+ ),
146
+ )
147
+
148
+
149
+ def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
150
+ header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
151
+ metadata = [header]
152
+ for i, mask_data in enumerate(masks):
153
+ mask = mask_data["segmentation"]
154
+ filename = f"{i}.png"
155
+ cv2.imwrite(os.path.join(path, filename), mask * 255)
156
+ mask_metadata = [
157
+ str(i),
158
+ str(mask_data["area"]),
159
+ *[str(x) for x in mask_data["bbox"]],
160
+ *[str(x) for x in mask_data["point_coords"][0]],
161
+ str(mask_data["predicted_iou"]),
162
+ str(mask_data["stability_score"]),
163
+ *[str(x) for x in mask_data["crop_box"]],
164
+ ]
165
+ row = ",".join(mask_metadata)
166
+ metadata.append(row)
167
+ metadata_path = os.path.join(path, "metadata.csv")
168
+ with open(metadata_path, "w") as f:
169
+ f.write("\n".join(metadata))
170
+
171
+ return
172
+
173
+
174
+ def get_amg_kwargs(args):
175
+ amg_kwargs = {
176
+ "points_per_side": args.points_per_side,
177
+ "points_per_batch": args.points_per_batch,
178
+ "pred_iou_thresh": args.pred_iou_thresh,
179
+ "stability_score_thresh": args.stability_score_thresh,
180
+ "stability_score_offset": args.stability_score_offset,
181
+ "box_nms_thresh": args.box_nms_thresh,
182
+ "crop_n_layers": args.crop_n_layers,
183
+ "crop_nms_thresh": args.crop_nms_thresh,
184
+ "crop_overlap_ratio": args.crop_overlap_ratio,
185
+ "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
186
+ "min_mask_region_area": args.min_mask_region_area,
187
+ }
188
+ amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
189
+ return amg_kwargs
190
+
191
+
192
+ def main(args: argparse.Namespace) -> None:
193
+ print("Loading model...")
194
+ sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
195
+ _ = sam.to(device=args.device)
196
+ output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
197
+ amg_kwargs = get_amg_kwargs(args)
198
+ generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
199
+
200
+ if not os.path.isdir(args.input):
201
+ targets = [args.input]
202
+ else:
203
+ targets = [f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f))]
204
+ targets = [os.path.join(args.input, f) for f in targets]
205
+
206
+ os.makedirs(args.output, exist_ok=True)
207
+
208
+ for t in targets:
209
+ print(f"Processing '{t}'...")
210
+ image = cv2.imread(t)
211
+ if image is None:
212
+ print(f"Could not load '{t}' as an image, skipping...")
213
+ continue
214
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
215
+
216
+ masks = generator.generate(image)
217
+
218
+ base = os.path.basename(t)
219
+ base = os.path.splitext(base)[0]
220
+ save_base = os.path.join(args.output, base)
221
+ if output_mode == "binary_mask":
222
+ os.makedirs(save_base, exist_ok=False)
223
+ write_masks_to_folder(masks, save_base)
224
+ else:
225
+ save_file = save_base + ".json"
226
+ with open(save_file, "w") as f:
227
+ json.dump(masks, f)
228
+ print("Done!")
229
+
230
+
231
+ if __name__ == "__main__":
232
+ args = parser.parse_args()
233
+ main(args)
scripts/code_format.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ black . --config pyproject.toml
2
+ isort .
scripts/export_onnx_model.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import argparse
8
+ import warnings
9
+
10
+ import torch
11
+
12
+ from metaseg import build_sam, build_sam_vit_b, build_sam_vit_l
13
+ from metaseg.utils.onnx import SamOnnxModel
14
+
15
+ try:
16
+ import onnxruntime # type: ignore
17
+
18
+ onnxruntime_exists = True
19
+ except ImportError:
20
+ onnxruntime_exists = False
21
+
22
+ parser = argparse.ArgumentParser(description="Export the SAM prompt encoder and mask decoder to an ONNX model.")
23
+
24
+ parser.add_argument("--checkpoint", type=str, required=True, help="The path to the SAM model checkpoint.")
25
+
26
+ parser.add_argument("--output", type=str, required=True, help="The filename to save the ONNX model to.")
27
+
28
+ parser.add_argument(
29
+ "--model-type",
30
+ type=str,
31
+ default="default",
32
+ help="In ['default', 'vit_b', 'vit_l']. Which type of SAM model to export.",
33
+ )
34
+
35
+ parser.add_argument(
36
+ "--return-single-mask",
37
+ action="store_true",
38
+ help=(
39
+ "If true, the exported ONNX model will only return the best mask, "
40
+ "instead of returning multiple masks. For high resolution images "
41
+ "this can improve runtime when upscaling masks is expensive."
42
+ ),
43
+ )
44
+
45
+ parser.add_argument(
46
+ "--opset",
47
+ type=int,
48
+ default=17,
49
+ help="The ONNX opset version to use. Must be >=11",
50
+ )
51
+
52
+ parser.add_argument(
53
+ "--quantize-out",
54
+ type=str,
55
+ default=None,
56
+ help=(
57
+ "If set, will quantize the model and save it with this name. "
58
+ "Quantization is performed with quantize_dynamic from onnxruntime.quantization.quantize."
59
+ ),
60
+ )
61
+
62
+ parser.add_argument(
63
+ "--gelu-approximate",
64
+ action="store_true",
65
+ help=(
66
+ "Replace GELU operations with approximations using tanh. Useful "
67
+ "for some runtimes that have slow or unimplemented erf ops, used in GELU."
68
+ ),
69
+ )
70
+
71
+ parser.add_argument(
72
+ "--use-stability-score",
73
+ action="store_true",
74
+ help=(
75
+ "Replaces the model's predicted mask quality score with the stability "
76
+ "score calculated on the low resolution masks using an offset of 1.0. "
77
+ ),
78
+ )
79
+
80
+ parser.add_argument(
81
+ "--return-extra-metrics",
82
+ action="store_true",
83
+ help=(
84
+ "The model will return five results: (masks, scores, stability_scores, "
85
+ "areas, low_res_logits) instead of the usual three. This can be "
86
+ "significantly slower for high resolution outputs."
87
+ ),
88
+ )
89
+
90
+
91
+ def run_export(
92
+ model_type: str,
93
+ checkpoint: str,
94
+ output: str,
95
+ opset: int,
96
+ return_single_mask: bool,
97
+ gelu_approximate: bool = False,
98
+ use_stability_score: bool = False,
99
+ return_extra_metrics=False,
100
+ ):
101
+ print("Loading model...")
102
+ if model_type == "vit_b":
103
+ sam = build_sam_vit_b(checkpoint)
104
+ elif model_type == "vit_l":
105
+ sam = build_sam_vit_l(checkpoint)
106
+ else:
107
+ sam = build_sam(checkpoint)
108
+
109
+ onnx_model = SamOnnxModel(
110
+ model=sam,
111
+ return_single_mask=return_single_mask,
112
+ use_stability_score=use_stability_score,
113
+ return_extra_metrics=return_extra_metrics,
114
+ )
115
+
116
+ if gelu_approximate:
117
+ for n, m in onnx_model.named_modules():
118
+ if isinstance(m, torch.nn.GELU):
119
+ m.approximate = "tanh"
120
+
121
+ dynamic_axes = {
122
+ "point_coords": {1: "num_points"},
123
+ "point_labels": {1: "num_points"},
124
+ }
125
+
126
+ embed_dim = sam.prompt_encoder.embed_dim
127
+ embed_size = sam.prompt_encoder.image_embedding_size
128
+ mask_input_size = [4 * x for x in embed_size]
129
+ dummy_inputs = {
130
+ "image_embeddings": torch.randn(1, embed_dim, *embed_size, dtype=torch.float),
131
+ "point_coords": torch.randint(low=0, high=1024, size=(1, 5, 2), dtype=torch.float),
132
+ "point_labels": torch.randint(low=0, high=4, size=(1, 5), dtype=torch.float),
133
+ "mask_input": torch.randn(1, 1, *mask_input_size, dtype=torch.float),
134
+ "has_mask_input": torch.tensor([1], dtype=torch.float),
135
+ "orig_im_size": torch.tensor([1500, 2250], dtype=torch.float),
136
+ }
137
+
138
+ _ = onnx_model(**dummy_inputs)
139
+
140
+ output_names = ["masks", "iou_predictions", "low_res_masks"]
141
+
142
+ with warnings.catch_warnings():
143
+ warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
144
+ warnings.filterwarnings("ignore", category=UserWarning)
145
+ with open(output, "wb") as f:
146
+ print(f"Exporing onnx model to {output}...")
147
+ torch.onnx.export(
148
+ onnx_model,
149
+ tuple(dummy_inputs.values()),
150
+ f,
151
+ export_params=True,
152
+ verbose=False,
153
+ opset_version=opset,
154
+ do_constant_folding=True,
155
+ input_names=list(dummy_inputs.keys()),
156
+ output_names=output_names,
157
+ dynamic_axes=dynamic_axes,
158
+ )
159
+
160
+ if onnxruntime_exists:
161
+ ort_inputs = {k: to_numpy(v) for k, v in dummy_inputs.items()}
162
+ ort_session = onnxruntime.InferenceSession(output)
163
+ _ = ort_session.run(None, ort_inputs)
164
+ print("Model has successfully been run with ONNXRuntime.")
165
+
166
+
167
+ def to_numpy(tensor):
168
+ return tensor.cpu().numpy()
169
+
170
+
171
+ if __name__ == "__main__":
172
+ args = parser.parse_args()
173
+ run_export(
174
+ model_type=args.model_type,
175
+ checkpoint=args.checkpoint,
176
+ output=args.output,
177
+ opset=args.opset,
178
+ return_single_mask=args.return_single_mask,
179
+ gelu_approximate=args.gelu_approximate,
180
+ use_stability_score=args.use_stability_score,
181
+ return_extra_metrics=args.return_extra_metrics,
182
+ )
183
+
184
+ if args.quantize_out is not None:
185
+ assert onnxruntime_exists, "onnxruntime is required to quantize the model."
186
+ from onnxruntime.quantization import QuantType # type: ignore
187
+ from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore
188
+
189
+ print(f"Quantizing model and writing to {args.quantize_out}...")
190
+ quantize_dynamic(
191
+ model_input=args.output,
192
+ model_output=args.quantize_out,
193
+ optimize_model=True,
194
+ per_channel=False,
195
+ reduce_range=False,
196
+ weight_type=QuantType.QUInt8,
197
+ )
198
+ print("Done!")
scripts/package.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ python setup.py sdist
2
+ twine upload dist/*
setup.cfg ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [isort]
2
+ line_length=100
3
+ multi_line_output=3
4
+ include_trailing_comma=True
5
+ known_standard_library=numpy,setuptools
6
+ skip_glob=*/__init__.py
7
+ known_myself=segment_anything
8
+ known_third_party=matplotlib,cv2,torch,torchvision,pycocotools,onnx,black,isort
9
+ no_lines_before=STDLIB,THIRDPARTY
10
+ sections=FUTURE,STDLIB,THIRDPARTY,MYSELF,FIRSTPARTY,LOCALFOLDER
11
+ default_section=FIRSTPARTY
setup.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import io
8
+ import os
9
+ import re
10
+
11
+ from setuptools import find_packages, setup
12
+
13
+
14
+ def get_long_description():
15
+ base_dir = os.path.abspath(os.path.dirname(__file__))
16
+ with io.open(os.path.join(base_dir, "README.md"), encoding="utf-8") as f:
17
+ return f.read()
18
+
19
+
20
+ def get_requirements():
21
+ with open("requirements.txt") as f:
22
+ return f.read().splitlines()
23
+
24
+
25
+ def get_version():
26
+ current_dir = os.path.abspath(os.path.dirname(__file__))
27
+ version_file = os.path.join(current_dir, "metaseg", "__init__.py")
28
+ with io.open(version_file, encoding="utf-8") as f:
29
+ return re.search(r'^__version__ = [\'"]([^\'"]*)[\'"]', f.read(), re.M).group(1)
30
+
31
+
32
+ _ALL_REQUIREMENTS = ["matplotlib", "pycocotools", "opencv-python", "onnx", "onnxruntime"]
33
+
34
+ _DEV_REQUIREMENTS = [
35
+ "black==23.*",
36
+ "isort==5.12.0",
37
+ "flake8",
38
+ "mypy",
39
+ ]
40
+
41
+ extras = {
42
+ "all": _ALL_REQUIREMENTS,
43
+ "dev": _DEV_REQUIREMENTS,
44
+ }
45
+
46
+ setup(
47
+ name="metaseg",
48
+ license="Apache-2.0",
49
+ author="kadirnar",
50
+ long_description=get_long_description(),
51
+ long_description_content_type="text/markdown",
52
+ url="https://github.com/kadirnar/segment-anything-pip",
53
+ version=get_version(),
54
+ install_requires=get_requirements(),
55
+ packages=find_packages(exclude=("notebook")),
56
+ extras_require=extras,
57
+ python_requires=">=3.8",
58
+ )