Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import spaces
|
5 |
-
from diffusers import AuraFlowPipeline
|
6 |
import torch
|
7 |
-
from
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
#torch._inductor.config.conv_1x1_as_mm = True
|
14 |
-
#torch._inductor.config.coordinate_descent_tuning = True
|
15 |
-
#torch._inductor.config.epilogue_fusion = False
|
16 |
-
#torch._inductor.config.coordinate_descent_check_all_directions = True
|
17 |
-
|
18 |
-
#pipe_v1 = AuraFlowPipeline.from_pretrained(
|
19 |
-
# "fal/AuraFlow",
|
20 |
-
# torch_dtype=torch.float16
|
21 |
-
#).to("cuda")
|
22 |
-
|
23 |
-
pipe_v2 = AuraFlowPipeline.from_pretrained(
|
24 |
-
"fal/AuraFlow-v0.2",
|
25 |
-
torch_dtype=torch.float16
|
26 |
-
).to("cuda")
|
27 |
-
|
28 |
pipe = AuraFlowPipeline.from_pretrained(
|
29 |
-
|
30 |
torch_dtype=torch.float16
|
31 |
-
).to(
|
32 |
-
#pipe.transformer.to(memory_format=torch.channels_last)
|
33 |
-
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
34 |
-
#pipe.transformer.to(memory_format=torch.channels_last)
|
35 |
-
#pipe.vae.to(memory_format=torch.channels_last)
|
36 |
-
|
37 |
-
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
38 |
-
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
39 |
|
40 |
MAX_SEED = np.iinfo(np.int32).max
|
41 |
MAX_IMAGE_SIZE = 1024
|
42 |
|
43 |
-
@spaces.GPU()
|
44 |
-
def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)):
|
45 |
-
generator = torch.Generator().manual_seed(seed)
|
46 |
-
image = pipe(
|
47 |
-
prompt = prompt,
|
48 |
-
negative_prompt = negative_prompt,
|
49 |
-
width = width,
|
50 |
-
height = height,
|
51 |
-
guidance_scale = guidance_scale,
|
52 |
-
num_inference_steps = num_inference_steps,
|
53 |
-
generator = generator
|
54 |
-
).images[0]
|
55 |
-
return image, seed
|
56 |
-
|
57 |
-
@spaces.GPU(duration=95)
|
58 |
def infer(prompt,
|
59 |
negative_prompt="",
|
60 |
seed=42,
|
@@ -63,68 +23,24 @@ def infer(prompt,
|
|
63 |
height=1024,
|
64 |
guidance_scale=5.0,
|
65 |
num_inference_steps=28,
|
66 |
-
|
67 |
-
comparison_mode=False,
|
68 |
-
progress=gr.Progress(track_tqdm=True)
|
69 |
-
):
|
70 |
|
71 |
if randomize_seed:
|
72 |
seed = random.randint(0, MAX_SEED)
|
73 |
|
74 |
-
generator = torch.Generator().manual_seed(seed)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
generator = torch.Generator().manual_seed(seed)
|
86 |
-
image_2 = pipe(
|
87 |
-
prompt = prompt,
|
88 |
-
negative_prompt = negative_prompt,
|
89 |
-
width=width,
|
90 |
-
height=height,
|
91 |
-
guidance_scale = guidance_scale,
|
92 |
-
num_inference_steps = num_inference_steps,
|
93 |
-
generator = generator
|
94 |
-
).images[0]
|
95 |
-
return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed
|
96 |
-
if(model_version == "0.1"):
|
97 |
-
image = pipe_v1(
|
98 |
-
prompt = prompt,
|
99 |
-
negative_prompt = negative_prompt,
|
100 |
-
width=width,
|
101 |
-
height=height,
|
102 |
-
guidance_scale = guidance_scale,
|
103 |
-
num_inference_steps = num_inference_steps,
|
104 |
-
generator = generator
|
105 |
-
).images[0]
|
106 |
-
elif(model_version == "0.2"):
|
107 |
-
image = pipe_v2(
|
108 |
-
prompt = prompt,
|
109 |
-
negative_prompt = negative_prompt,
|
110 |
-
width=width,
|
111 |
-
height=height,
|
112 |
-
guidance_scale = guidance_scale,
|
113 |
-
num_inference_steps = num_inference_steps,
|
114 |
-
generator = generator
|
115 |
-
).images[0]
|
116 |
-
else:
|
117 |
-
image = pipe(
|
118 |
-
prompt = prompt,
|
119 |
-
negative_prompt = negative_prompt,
|
120 |
-
width=width,
|
121 |
-
height=height,
|
122 |
-
guidance_scale = guidance_scale,
|
123 |
-
num_inference_steps = num_inference_steps,
|
124 |
-
generator = generator
|
125 |
-
).images[0]
|
126 |
|
127 |
-
return
|
128 |
|
129 |
examples = [
|
130 |
"A photo of a lavender cat",
|
@@ -141,16 +57,24 @@ css="""
|
|
141 |
"""
|
142 |
|
143 |
with gr.Blocks(css=css) as demo:
|
144 |
-
|
145 |
with gr.Column(elem_id="col-container"):
|
146 |
-
gr.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
with gr.Row():
|
153 |
-
|
154 |
prompt = gr.Text(
|
155 |
label="Prompt",
|
156 |
show_label=False,
|
@@ -158,18 +82,11 @@ with gr.Blocks(css=css) as demo:
|
|
158 |
placeholder="Enter your prompt",
|
159 |
container=False,
|
160 |
)
|
161 |
-
|
162 |
run_button = gr.Button("Run", scale=0)
|
163 |
|
164 |
result = gr.Image(label="Result", show_label=False)
|
165 |
-
|
166 |
-
comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False)
|
167 |
with gr.Accordion("Advanced Settings", open=False):
|
168 |
-
|
169 |
-
model_version = gr.Dropdown(
|
170 |
-
["0.2", "0.3"], label="Model version", value="0.3"
|
171 |
-
)
|
172 |
-
|
173 |
negative_prompt = gr.Text(
|
174 |
label="Negative prompt",
|
175 |
max_lines=1,
|
@@ -187,7 +104,6 @@ with gr.Blocks(css=css) as demo:
|
|
187 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
188 |
|
189 |
with gr.Row():
|
190 |
-
|
191 |
width = gr.Slider(
|
192 |
label="Width",
|
193 |
minimum=256,
|
@@ -195,7 +111,6 @@ with gr.Blocks(css=css) as demo:
|
|
195 |
step=32,
|
196 |
value=1024,
|
197 |
)
|
198 |
-
|
199 |
height = gr.Slider(
|
200 |
label="Height",
|
201 |
minimum=256,
|
@@ -205,7 +120,6 @@ with gr.Blocks(css=css) as demo:
|
|
205 |
)
|
206 |
|
207 |
with gr.Row():
|
208 |
-
|
209 |
guidance_scale = gr.Slider(
|
210 |
label="Guidance scale",
|
211 |
minimum=0.0,
|
@@ -213,7 +127,6 @@ with gr.Blocks(css=css) as demo:
|
|
213 |
step=0.1,
|
214 |
value=5.0,
|
215 |
)
|
216 |
-
|
217 |
num_inference_steps = gr.Slider(
|
218 |
label="Number of inference steps",
|
219 |
minimum=1,
|
@@ -223,18 +136,18 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
)
|
224 |
|
225 |
gr.Examples(
|
226 |
-
examples
|
227 |
-
fn
|
228 |
-
inputs
|
229 |
-
outputs
|
230 |
cache_examples="lazy"
|
231 |
)
|
232 |
|
233 |
gr.on(
|
234 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
235 |
-
fn
|
236 |
-
inputs
|
237 |
-
outputs
|
238 |
)
|
239 |
|
240 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
4 |
import torch
|
5 |
+
from diffusers import AuraFlowPipeline
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
+
# Initialize the AuraFlow v0.3 pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
pipe = AuraFlowPipeline.from_pretrained(
|
11 |
+
"fal/AuraFlow-v0.3",
|
12 |
torch_dtype=torch.float16
|
13 |
+
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = 1024
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def infer(prompt,
|
19 |
negative_prompt="",
|
20 |
seed=42,
|
|
|
23 |
height=1024,
|
24 |
guidance_scale=5.0,
|
25 |
num_inference_steps=28,
|
26 |
+
progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
27 |
|
28 |
if randomize_seed:
|
29 |
seed = random.randint(0, MAX_SEED)
|
30 |
|
31 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
32 |
+
|
33 |
+
image = pipe(
|
34 |
+
prompt=prompt,
|
35 |
+
negative_prompt=negative_prompt,
|
36 |
+
width=width,
|
37 |
+
height=height,
|
38 |
+
guidance_scale=guidance_scale,
|
39 |
+
num_inference_steps=num_inference_steps,
|
40 |
+
generator=generator
|
41 |
+
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
return image, seed
|
44 |
|
45 |
examples = [
|
46 |
"A photo of a lavender cat",
|
|
|
57 |
"""
|
58 |
|
59 |
with gr.Blocks(css=css) as demo:
|
|
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
+
gr.HTML(
|
62 |
+
"""
|
63 |
+
<h1 style='text-align: center'>
|
64 |
+
AuraFlow v0.3
|
65 |
+
</h1>
|
66 |
+
"""
|
67 |
+
)
|
68 |
+
gr.HTML(
|
69 |
+
"""
|
70 |
+
<h3 style='text-align: center'>
|
71 |
+
Follow me for more!
|
72 |
+
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
73 |
+
</h3>
|
74 |
+
"""
|
75 |
+
)
|
76 |
|
77 |
with gr.Row():
|
|
|
78 |
prompt = gr.Text(
|
79 |
label="Prompt",
|
80 |
show_label=False,
|
|
|
82 |
placeholder="Enter your prompt",
|
83 |
container=False,
|
84 |
)
|
|
|
85 |
run_button = gr.Button("Run", scale=0)
|
86 |
|
87 |
result = gr.Image(label="Result", show_label=False)
|
88 |
+
|
|
|
89 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
90 |
negative_prompt = gr.Text(
|
91 |
label="Negative prompt",
|
92 |
max_lines=1,
|
|
|
104 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
105 |
|
106 |
with gr.Row():
|
|
|
107 |
width = gr.Slider(
|
108 |
label="Width",
|
109 |
minimum=256,
|
|
|
111 |
step=32,
|
112 |
value=1024,
|
113 |
)
|
|
|
114 |
height = gr.Slider(
|
115 |
label="Height",
|
116 |
minimum=256,
|
|
|
120 |
)
|
121 |
|
122 |
with gr.Row():
|
|
|
123 |
guidance_scale = gr.Slider(
|
124 |
label="Guidance scale",
|
125 |
minimum=0.0,
|
|
|
127 |
step=0.1,
|
128 |
value=5.0,
|
129 |
)
|
|
|
130 |
num_inference_steps = gr.Slider(
|
131 |
label="Number of inference steps",
|
132 |
minimum=1,
|
|
|
136 |
)
|
137 |
|
138 |
gr.Examples(
|
139 |
+
examples=examples,
|
140 |
+
fn=infer,
|
141 |
+
inputs=[prompt],
|
142 |
+
outputs=[result, seed],
|
143 |
cache_examples="lazy"
|
144 |
)
|
145 |
|
146 |
gr.on(
|
147 |
triggers=[run_button.click, prompt.submit, negative_prompt.submit],
|
148 |
+
fn=infer,
|
149 |
+
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
150 |
+
outputs=[result, seed]
|
151 |
)
|
152 |
|
153 |
+
demo.queue().launch()
|