Spaces:
Running
Running
File size: 6,250 Bytes
a22dacf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from diffusion_webui.utils.model_list import stable_model_list
from diffusion_webui.utils.scheduler_list import get_scheduler_list
class StableDiffusionText2ImageGenerator:
def __init__(self):
self.pipe = None
def load_model(
self,
model_path,
scheduler,
):
if self.pipe is None:
self.pipe = StableDiffusionPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float16
)
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
return self.pipe
def generate_image(
self,
model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
seed_generator=0,
):
pipe = self.load_model(
model_path=model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
images = pipe(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return images
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_prompt = gr.Textbox(
lines=1,
placeholder="Prompt",
show_label=False,
)
text2image_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt",
show_label=False,
)
with gr.Row():
with gr.Column():
text2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Text-Image Model Id",
)
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
text2image_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=1,
label="Number Of Images",
)
with gr.Row():
with gr.Column():
text2image_scheduler = gr.Dropdown(
choices=[
"DDIM",
"EulerA",
"Euler",
"LMS",
"Heun",
],
value="DDIM",
label="Scheduler",
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Width",
)
text2image_seed_generator = gr.Slider(
label="Seed(0 for random)",
minimum=0,
maximum=1000000,
value=0,
)
text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2), height=200)
text2image_predict.click(
fn=StableDiffusionText2ImageGenerator().generate_image,
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_num_images_per_prompt,
text2image_scheduler,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
text2image_seed_generator,
],
outputs=output_image,
)
|