File size: 3,789 Bytes
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from diffusers import ( StableDiffusionControlNetPipeline, 
                       ControlNetModel, UniPCMultistepScheduler )

from transformers import pipeline
from PIL import Image
import gradio as gr
import numpy as np
import torch

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]


def controlnet_depth(image_path:str):
    depth_estimator = pipeline('depth-estimation')

    image = Image.open(image_path)
    image = depth_estimator(image)['depth']
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    image = Image.fromarray(image)

    controlnet = ControlNetModel.from_pretrained(
        "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
    )

    return controlnet, image

def stable_diffusion_controlnet_depth(
    image_path:str,
    model_path:str,
    prompt:str,
    negative_prompt:str,
    guidance_scale:int,
    num_inference_step:int,
    ):

    controlnet, image = controlnet_depth(image_path=image_path)

    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        pretrained_model_name_or_path=model_path, 
        controlnet=controlnet, 
        safety_checker=None, 
        torch_dtype=torch.float16
    )

    pipe.to("cuda")
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    output = pipe(
        prompt = prompt,
        image = image,
        negative_prompt = negative_prompt,
        num_inference_steps = num_inference_step,
        guidance_scale = guidance_scale,
    ).images

    return output[0]


def stable_diffusion_controlnet_depth_app():
    with gr.Tab('Depth'):
        controlnet_depth_image_file = gr.Image(
            type='filepath', 
            label='Image'
        )

        controlnet_depth_model_id = gr.Dropdown(
            choices=stable_model_list, 
            value=stable_model_list[0], 
            label='Stable Model Id'
        )

        controlnet_depth_prompt = gr.Textbox(
            lines=1, 
            value=stable_prompt_list[0], 
            label='Prompt'
        )

        controlnet_depth_negative_prompt = gr.Textbox(
            lines=1, 
            value=stable_negative_prompt_list[0], 
            label='Negative Prompt'
        )

        with gr.Accordion("Advanced Options", open=False):
            controlnet_depth_guidance_scale = gr.Slider(
                minimum=0.1, 
                maximum=15, 
                step=0.1, 
                value=7.5, 
                label='Guidance Scale'
            )

            controlnet_depth_num_inference_step = gr.Slider(
                minimum=1, 
                maximum=100, 
                step=1, 
                value=50, 
                label='Num Inference Step'
            )

        controlnet_depth_predict = gr.Button(value='Generator')

    variables = {
        'image_path': controlnet_depth_image_file,
        'model_path': controlnet_depth_model_id,
        'prompt': controlnet_depth_prompt,
        'negative_prompt': controlnet_depth_negative_prompt,
        'guidance_scale': controlnet_depth_guidance_scale,
        'num_inference_step': controlnet_depth_num_inference_step,
        'predict': controlnet_depth_predict
    }
    
    return variables