File size: 7,085 Bytes
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
import torch
from diffusers import (StableDiffusionControlNetPipeline, 
                       ControlNetModel, UniPCMultistepScheduler)


from PIL import Image
import gradio as gr
import numpy as np
import torch

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]


def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
            [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
            [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
            [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
            [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
            [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
            [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
            [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
            [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
            [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
            [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
            [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
            [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
            [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
            [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
            [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
            [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
            [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
            [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
            [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
            [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
            [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
            [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
            [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
            [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
            [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
            [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
            [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
            [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
            [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
            [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
            [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
            [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
            [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
            [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
            [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
            [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
            [102, 255, 0], [92, 0, 255]]


def controlnet_mlsd(image_path:str):
    image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
    image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")

    image = Image.open(image_path).convert('RGB')
    pixel_values = image_processor(image, return_tensors="pt").pixel_values

    with torch.no_grad():
        outputs = image_segmentor(pixel_values)

    seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]

    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
    palette = np.array(ade_palette())

    for label, color in enumerate(palette):
        color_seg[seg == label, :] = color

    color_seg = color_seg.astype(np.uint8)
    image = Image.fromarray(color_seg)
    controlnet = ControlNetModel.from_pretrained(
        "fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=torch.float16
    )

    return controlnet, image


def stable_diffusion_controlnet_seg(
    image_path:str,
    model_path:str,
    prompt:str,
    negative_prompt:str,
    guidance_scale:int,
    num_inference_step:int,
    ):

    controlnet, image = controlnet_mlsd(image_path=image_path)

    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        pretrained_model_name_or_path=model_path, 
        controlnet=controlnet, 
        safety_checker=None, 
        torch_dtype=torch.float16
    )

    pipe.to("cuda")
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    output = pipe(
        prompt = prompt,
        image = image,
        negative_prompt = negative_prompt,
        num_inference_steps = num_inference_step,
        guidance_scale = guidance_scale,
    ).images

    return output[0]

def stable_diffusion_controlnet_seg_app():
    with gr.Tab('Segmentation'):
        controlnet_seg_image_file = gr.Image(
            type='filepath', 
            label='Image'
        )

        controlnet_seg_model_id = gr.Dropdown(
            choices=stable_model_list, 
            value=stable_model_list[0], 
            label='Stable Model Id'
        )

        controlnet_seg_prompt = gr.Textbox(
            lines=1, 
            value=stable_prompt_list[0], 
            label='Prompt'
        )

        controlnet_seg_negative_prompt = gr.Textbox(
            lines=1, 
            value=stable_negative_prompt_list[0], 
            label='Negative Prompt'
        )

        with gr.Accordion("Advanced Options", open=False):
            controlnet_seg_guidance_scale = gr.Slider(
                minimum=0.1, 
                maximum=15, 
                step=0.1, 
                value=7.5, 
                label='Guidance Scale'
            )

            controlnet_seg_num_inference_step = gr.Slider(
                minimum=1, 
                maximum=100, 
                step=1, 
                value=50, 
                label='Num Inference Step'
            )

        controlnet_seg_predict = gr.Button(value='Generator')

    variables = {
        'image_path': controlnet_seg_image_file,
        'model_path': controlnet_seg_model_id,
        'prompt': controlnet_seg_prompt,
        'negative_prompt': controlnet_seg_negative_prompt,
        'guidance_scale': controlnet_seg_guidance_scale,
        'num_inference_step': controlnet_seg_num_inference_step,
        'predict': controlnet_seg_predict,
    }
    
    return variables