Spaces:
Running
Running
File size: 7,085 Bytes
3911a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
import torch
from diffusers import (StableDiffusionControlNetPipeline,
ControlNetModel, UniPCMultistepScheduler)
from PIL import Image
import gradio as gr
import numpy as np
import torch
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2",
"stabilityai/stable-diffusion-2-base",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base"
]
stable_inpiant_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting"
]
stable_prompt_list = [
"a photo of a man.",
"a photo of a girl."
]
stable_negative_prompt_list = [
"bad, ugly",
"deformed"
]
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
[102, 255, 0], [92, 0, 255]]
def controlnet_mlsd(image_path:str):
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
image = Image.open(image_path).convert('RGB')
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
image = Image.fromarray(color_seg)
controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=torch.float16
)
return controlnet, image
def stable_diffusion_controlnet_seg(
image_path:str,
model_path:str,
prompt:str,
negative_prompt:str,
guidance_scale:int,
num_inference_step:int,
):
controlnet, image = controlnet_mlsd(image_path=image_path)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
pretrained_model_name_or_path=model_path,
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16
)
pipe.to("cuda")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
output = pipe(
prompt = prompt,
image = image,
negative_prompt = negative_prompt,
num_inference_steps = num_inference_step,
guidance_scale = guidance_scale,
).images
return output[0]
def stable_diffusion_controlnet_seg_app():
with gr.Tab('Segmentation'):
controlnet_seg_image_file = gr.Image(
type='filepath',
label='Image'
)
controlnet_seg_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_seg_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_seg_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_seg_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_seg_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_seg_predict = gr.Button(value='Generator')
variables = {
'image_path': controlnet_seg_image_file,
'model_path': controlnet_seg_model_id,
'prompt': controlnet_seg_prompt,
'negative_prompt': controlnet_seg_negative_prompt,
'guidance_scale': controlnet_seg_guidance_scale,
'num_inference_step': controlnet_seg_num_inference_step,
'predict': controlnet_seg_predict,
}
return variables
|