Spaces:
Running
Running
File size: 6,552 Bytes
cab0202 17e4caa cab0202 3fc4e02 77b6bae cab0202 3fc4e02 3decda6 17e4caa 3decda6 cab0202 3fc4e02 4411eb3 cab0202 21de9e6 cab0202 21de9e6 cab0202 5f0f463 cab0202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline,DiffusionPipeline
from diffusion_webui.utils.model_list import stable_model_list
from diffusion_webui.utils.scheduler_list import (
SCHEDULER_MAPPING,
get_scheduler,
)
class StableDiffusionText2ImageGenerator:
def __init__(self):
self.pipe = None
def load_model(
self,
stable_model_path,
scheduler,
):
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
if stable_model_path == "stabilityai/stable-diffusion-xl-base-0.9":
self.pipe = DiffusionPipeline.from_pretrained(
stable_model_path, safety_checker=None, torch_dtype=torch.float16
)
else:
self.pipe = StableDiffusionPipeline.from_pretrained(
stable_model_path, safety_checker=None, torch_dtype=torch.float16
)
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.model_name = stable_model_path
self.pipe.scheduler_name = scheduler
return self.pipe
def generate_image(
self,
stable_model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
seed_generator=0,
):
pipe = self.load_model(
stable_model_path=stable_model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
images = pipe(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return images
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_prompt = gr.Textbox(
lines=1,
placeholder="Prompt",
show_label=False,
)
text2image_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt",
show_label=False,
)
with gr.Row():
with gr.Column():
text2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Text-Image Model Id",
)
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
text2image_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Number Of Images",
)
with gr.Row():
with gr.Column():
text2image_scheduler = gr.Dropdown(
choices=list(SCHEDULER_MAPPING.keys()),
value=list(SCHEDULER_MAPPING.keys())[0],
label="Scheduler",
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Width",
)
text2image_seed_generator = gr.Slider(
label="Seed(0 for random)",
minimum=0,
maximum=1000000,
value=0,
)
text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2), height=200)
text2image_predict.click(
fn=StableDiffusionText2ImageGenerator().generate_image,
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_num_images_per_prompt,
text2image_scheduler,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
text2image_seed_generator,
],
outputs=output_image,
)
|