File size: 3,269 Bytes
3911a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from diffusers import StableDiffusionPipeline, DDIMScheduler
import gradio as gr
import torch

stable_model_list = [
    "runwayml/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-2",
    "stabilityai/stable-diffusion-2-base",
    "stabilityai/stable-diffusion-2-1",
    "stabilityai/stable-diffusion-2-1-base"
]

stable_inpiant_model_list = [
    "stabilityai/stable-diffusion-2-inpainting",
    "runwayml/stable-diffusion-inpainting"
]

stable_prompt_list = [
        "a photo of a man.",
        "a photo of a girl."
    ]

stable_negative_prompt_list = [
        "bad, ugly",
        "deformed"
    ]

def stable_diffusion_text2img(
    model_path:str,
    prompt:str,
    negative_prompt:str,
    guidance_scale:int,
    num_inference_step:int,
    height:int,
    width:int,
    ):

    pipe = StableDiffusionPipeline.from_pretrained(
        model_path, 
        safety_checker=None, 
        torch_dtype=torch.float16
    ).to("cuda")

    pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
    pipe.enable_xformers_memory_efficient_attention()

    images = pipe(
        prompt,
        height=height,
        width=width,
        negative_prompt=negative_prompt,
        num_inference_steps=num_inference_step,
        guidance_scale=guidance_scale,
    ).images

    return images[0]

def stable_diffusion_text2img_app():
    with gr.Tab('Text2Image'):
        text2image_model_path = gr.Dropdown(
            choices=stable_model_list, 
            value=stable_model_list[0], 
            label='Text-Image Model Id'
        )

        text2image_prompt = gr.Textbox(
            lines=1, 
            value=stable_prompt_list[0], 
            label='Prompt'
        )

        text2image_negative_prompt = gr.Textbox(
            lines=1, 
            value=stable_negative_prompt_list[0], 
            label='Negative Prompt'
        )

        with gr.Accordion("Advanced Options", open=False):
            text2image_guidance_scale = gr.Slider(
                minimum=0.1, 
                maximum=15, 
                step=0.1, 
                value=7.5, 
                label='Guidance Scale'
            )

            text2image_num_inference_step = gr.Slider(
                minimum=1, 
                maximum=100, 
                step=1, 
                value=50, 
                label='Num Inference Step'
            )

            text2image_height = gr.Slider(
                minimum=128, 
                maximum=1280, 
                step=32, 
                value=512, 
                label='Image Height'
            )

            text2image_width = gr.Slider(
                minimum=128, 
                maximum=1280, 
                step=32, 
                value=768, 
                label='Image Height'
            )

        text2image_predict = gr.Button(value='Generator')
    
    variables = {
        "model_path": text2image_model_path,
        "prompt": text2image_prompt,
        "negative_prompt": text2image_negative_prompt,
        "guidance_scale": text2image_guidance_scale,
        "num_inference_step": text2image_num_inference_step,
        "height": text2image_height,
        "width": text2image_width,
        "predict": text2image_predict
    }

    return variables