Spaces:
Running
Running
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
from diffusion_webui.utils.model_list import stable_inpiant_model_list | |
class StableDiffusionInpaintGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model(self, model_path): | |
if self.pipe is None or self.pipe.model_name != stable_model_path: | |
self.pipe = DiffusionPipeline.from_pretrained( | |
model_path, revision="fp16", torch_dtype=torch.float16 | |
) | |
self.pipe.to("cuda") | |
self.pipe.enable_xformers_memory_efficient_attention() | |
return self.pipe | |
def generate_image( | |
self, | |
pil_image: str, | |
model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
num_images_per_prompt: int, | |
guidance_scale: int, | |
num_inference_step: int, | |
seed_generator=0, | |
): | |
image = pil_image["image"].convert("RGB").resize((512, 512)) | |
mask_image = pil_image["mask"].convert("RGB").resize((512, 512)) | |
pipe = self.load_model(model_path) | |
if seed_generator == 0: | |
random_seed = torch.randint(0, 1000000, (1,)) | |
generator = torch.manual_seed(random_seed) | |
else: | |
generator = torch.manual_seed(seed_generator) | |
output = pipe( | |
prompt=prompt, | |
image=image, | |
mask_image=mask_image, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images | |
return output | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
stable_diffusion_inpaint_image_file = gr.Image( | |
source="upload", | |
tool="sketch", | |
elem_id="image_upload", | |
type="pil", | |
label="Upload", | |
).style(height=260) | |
stable_diffusion_inpaint_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Prompt", | |
show_label=False, | |
) | |
stable_diffusion_inpaint_negative_prompt = gr.Textbox( | |
lines=1, | |
placeholder="Negative Prompt", | |
show_label=False, | |
) | |
stable_diffusion_inpaint_model_id = gr.Dropdown( | |
choices=stable_inpiant_model_list, | |
value=stable_inpiant_model_list[0], | |
label="Inpaint Model Id", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
stable_diffusion_inpaint_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
stable_diffusion_inpaint_num_inference_step = ( | |
gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
) | |
with gr.Row(): | |
with gr.Column(): | |
stable_diffusion_inpiant_num_images_per_prompt = gr.Slider( | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=1, | |
label="Number Of Images", | |
) | |
stable_diffusion_inpaint_seed_generator = ( | |
gr.Slider( | |
minimum=0, | |
maximum=1000000, | |
step=1, | |
value=0, | |
label="Seed(0 for random)", | |
) | |
) | |
stable_diffusion_inpaint_predict = gr.Button( | |
value="Generator" | |
) | |
with gr.Column(): | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
).style(grid=(1, 2)) | |
stable_diffusion_inpaint_predict.click( | |
fn=StableDiffusionInpaintGenerator().generate_image, | |
inputs=[ | |
stable_diffusion_inpaint_image_file, | |
stable_diffusion_inpaint_model_id, | |
stable_diffusion_inpaint_prompt, | |
stable_diffusion_inpaint_negative_prompt, | |
stable_diffusion_inpiant_num_images_per_prompt, | |
stable_diffusion_inpaint_guidance_scale, | |
stable_diffusion_inpaint_num_inference_step, | |
stable_diffusion_inpaint_seed_generator, | |
], | |
outputs=[output_image], | |
) | |