kadirnar's picture
Update diffusion_webui/diffusion_models/text2img_app.py
21de9e6
raw
history blame
6.21 kB
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from diffusion_webui.utils.model_list import stable_model_list
from diffusion_webui.utils.scheduler_list import (
SCHEDULER_MAPPING,
get_scheduler,
)
class StableDiffusionText2ImageGenerator:
def __init__(self):
self.pipe = None
def load_model(
self,
stable_model_path,
scheduler_name,
):
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler:
self.pipe = StableDiffusionPipeline.from_pretrained(
model_path, safety_checker=None, torch_dtype=torch.float16
)
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.model_name = stable_model_path
return self.pipe
def generate_image(
self,
stable_model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
scheduler: str,
guidance_scale: int,
num_inference_step: int,
height: int,
width: int,
seed_generator=0,
):
pipe = self.load_model(
stable_model_path=stable_model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
images = pipe(
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return images
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
text2image_prompt = gr.Textbox(
lines=1,
placeholder="Prompt",
show_label=False,
)
text2image_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt",
show_label=False,
)
with gr.Row():
with gr.Column():
text2image_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Text-Image Model Id",
)
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
text2image_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=30,
step=1,
value=1,
label="Number Of Images",
)
with gr.Row():
with gr.Column():
text2image_scheduler = gr.Dropdown(
choices=list(SCHEDULER_MAPPING.keys()),
value=list(SCHEDULER_MAPPING.keys())[0],
label="Scheduler",
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Height",
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Image Width",
)
text2image_seed_generator = gr.Slider(
label="Seed(0 for random)",
minimum=0,
maximum=1000000,
value=0,
)
text2image_predict = gr.Button(value="Generator")
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2), height=200)
text2image_predict.click(
fn=StableDiffusionText2ImageGenerator().generate_image,
inputs=[
text2image_model_path,
text2image_prompt,
text2image_negative_prompt,
text2image_num_images_per_prompt,
text2image_scheduler,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
text2image_seed_generator,
],
outputs=output_image,
)