Spaces:
Running
Running
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler | |
from IPython.display import display | |
from PIL import Image | |
import torch | |
def stable_diffusion_img2img( | |
model_path:str, | |
image_path:str, | |
prompt:str, | |
negative_prompt:str, | |
num_samples:int, | |
guidance_scale:int, | |
num_inference_step:int, | |
): | |
image = Image.open(image_path) | |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model_path, | |
safety_checker=None, | |
torch_dtype=torch.float16 | |
) | |
pipe.to("cuda") | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
output = pipe( | |
prompt = prompt, | |
image = image, | |
negative_prompt = negative_prompt, | |
num_images_per_prompt = num_samples, | |
num_inference_steps = num_inference_step, | |
guidance_scale = guidance_scale, | |
).images | |
return output | |