Spaces:
Running
Running
import gradio as gr | |
import torch | |
import cv2 | |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline | |
from PIL import Image | |
from diffusion_webui.diffusion_models.base_controlnet_pipeline import ( | |
ControlnetPipeline, | |
) | |
from diffusion_webui.utils.model_list import ( | |
controlnet_model_list, | |
stable_model_list, | |
) | |
from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT | |
from diffusion_webui.utils.scheduler_list import ( | |
SCHEDULER_MAPPING, | |
get_scheduler, | |
) | |
class StableDiffusionControlNetGenerator(ControlnetPipeline): | |
def __init__(self): | |
self.pipe = None | |
def load_model(self, stable_model_path, controlnet_model_path, scheduler): | |
if self.pipe is None: | |
controlnet = ControlNetModel.from_pretrained( | |
controlnet_model_path, torch_dtype=torch.float16 | |
) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
pretrained_model_name_or_path=stable_model_path, | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler) | |
self.pipe.to("cuda") | |
self.pipe.enable_xformers_memory_efficient_attention() | |
return self.pipe | |
def controlnet_preprocces( | |
self, | |
read_image: str, | |
preprocces_type: str, | |
): | |
processed_image = PREPROCCES_DICT[preprocces_type](read_image) | |
return processed_image | |
def generate_image( | |
self, | |
image_path: str, | |
stable_model_path: str, | |
controlnet_model_path: str, | |
height: int, | |
width: int, | |
guess_mode: bool, | |
controlnet_conditioning_scale: int, | |
prompt: str, | |
negative_prompt: str, | |
num_images_per_prompt: int, | |
guidance_scale: int, | |
num_inference_step: int, | |
scheduler: str, | |
seed_generator: int, | |
preprocces_type: str, | |
): | |
pipe = self.load_model( | |
stable_model_path=stable_model_path, | |
controlnet_model_path=controlnet_model_path, | |
scheduler=scheduler, | |
) | |
if preprocces_type== "ScribbleXDOG": | |
read_image = cv2.imread(image_path) | |
controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type)[0] | |
controlnet_image = Image.fromarray(controlnet_image) | |
else: | |
read_image = Image.open(image_path) | |
controlnet_image = self.controlnet_preprocces(read_image=read_image, preprocces_type=preprocces_type) | |
if seed_generator == 0: | |
random_seed = torch.randint(0, 1000000, (1,)) | |
generator = torch.manual_seed(random_seed) | |
else: | |
generator = torch.manual_seed(seed_generator) | |
output = pipe( | |
prompt=prompt, | |
height=height, | |
width=width, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guess_mode=guess_mode, | |
image=controlnet_image, | |
negative_prompt=negative_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images | |
return output | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_image_path = gr.Image( | |
type="filepath", label="Image" | |
).style(height=260) | |
controlnet_prompt = gr.Textbox( | |
lines=1, placeholder="Prompt", show_label=False | |
) | |
controlnet_negative_prompt = gr.Textbox( | |
lines=1, placeholder="Negative Prompt", show_label=False | |
) | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_stable_model_path = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label="Stable Model Path", | |
) | |
controlnet_preprocces_type = gr.Dropdown( | |
choices=list(PREPROCCES_DICT.keys()), | |
value=list(PREPROCCES_DICT.keys())[0], | |
label="Preprocess Type", | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="ControlNet Conditioning Scale", | |
) | |
controlnet_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
controlnet_height = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=512, | |
label="Height", | |
) | |
controlnet_width = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
step=32, | |
value=512, | |
label="Width", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_model_path = gr.Dropdown( | |
choices=controlnet_model_list, | |
value=controlnet_model_list[0], | |
label="ControlNet Model Path", | |
) | |
controlnet_scheduler = gr.Dropdown( | |
choices=list(SCHEDULER_MAPPING.keys()), | |
value=list(SCHEDULER_MAPPING.keys())[0], | |
label="Scheduler", | |
) | |
controlnet_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=150, | |
step=1, | |
value=30, | |
label="Num Inference Step", | |
) | |
controlnet_num_images_per_prompt = gr.Slider( | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
label="Number Of Images", | |
) | |
controlnet_seed_generator = gr.Slider( | |
minimum=0, | |
maximum=1000000, | |
step=1, | |
value=0, | |
label="Seed(0 for random)", | |
) | |
controlnet_guess_mode = gr.Checkbox( | |
label="Guess Mode" | |
) | |
# Button to generate the image | |
predict_button = gr.Button(value="Generate Image") | |
with gr.Column(): | |
# Gallery to display the generated images | |
output_image = gr.Gallery( | |
label="Generated images", | |
show_label=False, | |
elem_id="gallery", | |
).style(grid=(1, 2)) | |
predict_button.click( | |
fn=StableDiffusionControlNetGenerator().generate_image, | |
inputs=[ | |
controlnet_image_path, | |
controlnet_stable_model_path, | |
controlnet_model_path, | |
controlnet_height, | |
controlnet_width, | |
controlnet_guess_mode, | |
controlnet_conditioning_scale, | |
controlnet_prompt, | |
controlnet_negative_prompt, | |
controlnet_num_images_per_prompt, | |
controlnet_guidance_scale, | |
controlnet_num_inference_step, | |
controlnet_scheduler, | |
controlnet_seed_generator, | |
controlnet_preprocces_type, | |
], | |
outputs=[output_image], | |
) | |