ComfyUI-Demo / diffusion_webui /diffusion_models /controlnet_inpaint_pipeline.py
kadirnar's picture
Upload 15 files
cab0202
raw
history blame
10.2 kB
import gradio as gr
import numpy as np
import torch
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
from PIL import Image
from diffusion_webui.diffusion_models.base_controlnet_pipeline import (
ControlnetPipeline,
)
from diffusion_webui.utils.model_list import (
controlnet_model_list,
stable_model_list,
)
from diffusion_webui.utils.preprocces_utils import PREPROCCES_DICT
from diffusion_webui.utils.scheduler_list import (
SCHEDULER_MAPPING,
get_scheduler,
)
class StableDiffusionControlNetInpaintGenerator(ControlnetPipeline):
def __init__(self):
super().__init__()
def load_model(self, stable_model_path, controlnet_model_path, scheduler):
if self.pipe is None:
controlnet = ControlNetModel.from_pretrained(
controlnet_model_path, torch_dtype=torch.float16
)
self.pipe = (
StableDiffusionControlNetInpaintPipeline.from_pretrained(
pretrained_model_name_or_path=stable_model_path,
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
)
)
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
return self.pipe
def load_image(self, image):
image = np.array(image)
image = Image.fromarray(image)
return image
def controlnet_preprocces(
self,
read_image: str,
preprocces_type: str,
):
processed_image = PREPROCCES_DICT[preprocces_type](read_image)
return processed_image
def generate_image(
self,
image_path: str,
stable_model_path: str,
controlnet_model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
height: int,
width: int,
strength: int,
guess_mode: bool,
guidance_scale: int,
num_inference_step: int,
controlnet_conditioning_scale: int,
scheduler: str,
seed_generator: int,
preprocces_type: str,
):
normal_image = image_path["image"].convert("RGB").resize((512, 512))
mask_image = image_path["mask"].convert("RGB").resize((512, 512))
normal_image = self.load_image(image=normal_image)
mask_image = self.load_image(image=mask_image)
control_image = self.controlnet_preprocces(
read_image=normal_image, preprocces_type=preprocces_type
)
pipe = self.load_model(
stable_model_path=stable_model_path,
controlnet_model_path=controlnet_model_path,
scheduler=scheduler,
)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
output = pipe(
prompt=prompt,
image=normal_image,
height=height,
width=width,
mask_image=mask_image,
strength=strength,
guess_mode=guess_mode,
control_image=control_image,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
).images
return output
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
controlnet_inpaint_image_path = gr.Image(
source="upload",
tool="sketch",
elem_id="image_upload",
type="pil",
label="Upload",
).style(height=260)
controlnet_inpaint_prompt = gr.Textbox(
lines=1, placeholder="Prompt", show_label=False
)
controlnet_inpaint_negative_prompt = gr.Textbox(
lines=1, placeholder="Negative Prompt", show_label=False
)
with gr.Row():
with gr.Column():
controlnet_inpaint_stable_model_path = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label="Stable Model Path",
)
controlnet_inpaint_preprocces_type = gr.Dropdown(
choices=list(PREPROCCES_DICT.keys()),
value=list(PREPROCCES_DICT.keys())[0],
label="Preprocess Type",
)
controlnet_inpaint_conditioning_scale = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="ControlNet Conditioning Scale",
)
controlnet_inpaint_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
controlnet_inpaint_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Height",
)
controlnet_inpaint_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label="Width",
)
controlnet_inpaint_guess_mode = gr.Checkbox(
label="Guess Mode"
)
with gr.Column():
controlnet_inpaint_model_path = gr.Dropdown(
choices=controlnet_model_list,
value=controlnet_model_list[0],
label="ControlNet Model Path",
)
controlnet_inpaint_scheduler = gr.Dropdown(
choices=list(SCHEDULER_MAPPING.keys()),
value=list(SCHEDULER_MAPPING.keys())[0],
label="Scheduler",
)
controlnet_inpaint_strength = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Strength",
)
controlnet_inpaint_num_inference_step = gr.Slider(
minimum=1,
maximum=150,
step=1,
value=30,
label="Num Inference Step",
)
controlnet_inpaint_num_images_per_prompt = (
gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Number Of Images",
)
)
controlnet_inpaint_seed_generator = gr.Slider(
minimum=0,
maximum=1000000,
step=1,
value=0,
label="Seed(0 for random)",
)
# Button to generate the image
controlnet_inpaint_predict_button = gr.Button(
value="Generate Image"
)
with gr.Column():
# Gallery to display the generated images
controlnet_inpaint_output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2))
controlnet_inpaint_predict_button.click(
fn=StableDiffusionControlNetInpaintGenerator().generate_image,
inputs=[
controlnet_inpaint_image_path,
controlnet_inpaint_stable_model_path,
controlnet_inpaint_model_path,
controlnet_inpaint_prompt,
controlnet_inpaint_negative_prompt,
controlnet_inpaint_num_images_per_prompt,
controlnet_inpaint_height,
controlnet_inpaint_width,
controlnet_inpaint_strength,
controlnet_inpaint_guess_mode,
controlnet_inpaint_guidance_scale,
controlnet_inpaint_num_inference_step,
controlnet_inpaint_conditioning_scale,
controlnet_inpaint_scheduler,
controlnet_inpaint_seed_generator,
controlnet_inpaint_preprocces_type,
],
outputs=[controlnet_inpaint_output_image],
)