Spaces:
Running
Running
import gradio as gr | |
import torch | |
from controlnet_aux import HEDdetector | |
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionControlNetPipeline, | |
UniPCMultistepScheduler, | |
) | |
from PIL import Image | |
stable_model_list = [ | |
"runwayml/stable-diffusion-v1-5", | |
"stabilityai/stable-diffusion-2-1", | |
] | |
controlnet_hed_model_list = [ | |
"lllyasviel/sd-controlnet-hed", | |
"thibaud/controlnet-sd21-hed-diffusers", | |
] | |
stable_prompt_list = ["a photo of a man.", "a photo of a girl."] | |
stable_negative_prompt_list = ["bad, ugly", "deformed"] | |
data_list = [ | |
"data/test.png", | |
] | |
def controlnet_hed(image_path: str, controlnet_hed_model_path: str): | |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet") | |
image = Image.open(image_path) | |
image = hed(image) | |
controlnet = ControlNetModel.from_pretrained( | |
controlnet_hed_model_path, torch_dtype=torch.float16 | |
) | |
return controlnet, image | |
def stable_diffusion_controlnet_hed( | |
image_path: str, | |
stable_model_path: str, | |
controlnet_hed_model_path: str, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: int, | |
num_inference_step: int, | |
): | |
controlnet, image = controlnet_hed( | |
image_path=image_path, | |
controlnet_hed_model_path=controlnet_hed_model_path, | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
pretrained_model_name_or_path=stable_model_path, | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
) | |
pipe.to("cuda") | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
output = pipe( | |
prompt=prompt, | |
image=image, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_step, | |
guidance_scale=guidance_scale, | |
).images | |
return output[0] | |
def stable_diffusion_controlnet_hed_app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
controlnet_hed_image_file = gr.Image( | |
type="filepath", label="Image" | |
) | |
controlnet_hed_stable_model_id = gr.Dropdown( | |
choices=stable_model_list, | |
value=stable_model_list[0], | |
label="Stable Model Id", | |
) | |
controlnet_hed_model_id = gr.Dropdown( | |
choices=controlnet_hed_model_list, | |
value=controlnet_hed_model_list[0], | |
label="ControlNet Model Id", | |
) | |
controlnet_hed_prompt = gr.Textbox( | |
lines=1, value=stable_prompt_list[0], label="Prompt" | |
) | |
controlnet_hed_negative_prompt = gr.Textbox( | |
lines=1, | |
value=stable_negative_prompt_list[0], | |
label="Negative Prompt", | |
) | |
with gr.Accordion("Advanced Options", open=False): | |
controlnet_hed_guidance_scale = gr.Slider( | |
minimum=0.1, | |
maximum=15, | |
step=0.1, | |
value=7.5, | |
label="Guidance Scale", | |
) | |
controlnet_hed_num_inference_step = gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
label="Num Inference Step", | |
) | |
controlnet_hed_predict = gr.Button(value="Generator") | |
with gr.Column(): | |
output_image = gr.Image(label="Output") | |
gr.Examples( | |
fn=stable_diffusion_controlnet_hed, | |
examples=[ | |
[ | |
data_list[0], | |
stable_model_list[0], | |
controlnet_hed_model_list[0], | |
stable_prompt_list[0], | |
stable_negative_prompt_list[0], | |
7.5, | |
50, | |
] | |
], | |
inputs=[ | |
controlnet_hed_image_file, | |
controlnet_hed_stable_model_id, | |
controlnet_hed_model_id, | |
controlnet_hed_prompt, | |
controlnet_hed_negative_prompt, | |
controlnet_hed_guidance_scale, | |
controlnet_hed_num_inference_step, | |
], | |
outputs=[output_image], | |
cache_examples=False, | |
label="ControlNet HED Example", | |
) | |
controlnet_hed_predict.click( | |
fn=stable_diffusion_controlnet_hed, | |
inputs=[ | |
controlnet_hed_image_file, | |
controlnet_hed_stable_model_id, | |
controlnet_hed_model_id, | |
controlnet_hed_prompt, | |
controlnet_hed_negative_prompt, | |
controlnet_hed_guidance_scale, | |
controlnet_hed_num_inference_step, | |
], | |
outputs=[output_image], | |
) | |