Spaces:
Running
Running
from diffusers import DiffusionPipeline, DDIMScheduler | |
from PIL import Image | |
import imageio | |
import torch | |
# https://huggingface.co/spaces/Manjushri/SD-2.0-Inpainting-CPU/blob/main/app.py | |
def resize(height,img): | |
baseheight = height | |
img = Image.open(img) | |
hpercent = (baseheight/float(img.size[1])) | |
wsize = int((float(img.size[0])*float(hpercent))) | |
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS) | |
return img | |
def img_preprocces(source_img, prompt, negative_prompt): | |
imageio.imwrite("data.png", source_img["image"]) | |
imageio.imwrite("data_mask.png", source_img["mask"]) | |
src = resize(512, "data.png") | |
src.save("src.png") | |
mask = resize(512, "data_mask.png") | |
mask.save("mask.png") | |
return src, mask | |
def stable_diffusion_inpaint( | |
image_path:str, | |
model_path:str, | |
prompt:str, | |
negative_prompt:str, | |
guidance_scale:int, | |
num_inference_step:int, | |
): | |
image, mask_image = img_preprocces(image_path, prompt, negative_prompt) | |
pipe = DiffusionPipeline.from_pretrained( | |
model_path, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe.to('cuda') | |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
output = pipe( | |
prompt = prompt, | |
image = image, | |
mask_image=mask_image, | |
negative_prompt = negative_prompt, | |
num_inference_steps = num_inference_step, | |
guidance_scale = guidance_scale, | |
).images | |
return output | |