Spaces:
Running
Running
update
Browse files- app.py +29 -29
- data/bash.sh +2 -0
- data/test.png +0 -0
- diffusion_webui/controlnet/controlnet_canny.py +91 -66
- diffusion_webui/controlnet/controlnet_depth.py +92 -65
- diffusion_webui/controlnet/controlnet_hed.py +93 -68
- diffusion_webui/controlnet/controlnet_mlsd.py +83 -63
- diffusion_webui/controlnet/controlnet_pose.py +91 -67
- diffusion_webui/controlnet/controlnet_scribble.py +91 -64
- diffusion_webui/controlnet/controlnet_seg.py +243 -107
- diffusion_webui/helpers.py +33 -0
- diffusion_webui/stable_diffusion/__pycache__/__init__.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/img2img_app.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/inpaint_app.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/keras_txt2img.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/__pycache__/text2img_app.cpython-38.pyc +0 -0
- diffusion_webui/stable_diffusion/img2img_app.py +68 -54
- diffusion_webui/stable_diffusion/inpaint_app.py +43 -54
- diffusion_webui/stable_diffusion/keras_txt2img.py +84 -61
- diffusion_webui/stable_diffusion/text2img_app.py +73 -57
- pyproject.toml +6 -0
- script/code_formatter.sh +2 -0
app.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
-
from diffusion_webui.controlnet.controlnet_canny import stable_diffusion_controlnet_canny_app, stable_diffusion_controlnet_canny
|
2 |
-
from diffusion_webui.controlnet.controlnet_depth import stable_diffusion_controlnet_depth_app, stable_diffusion_controlnet_depth
|
3 |
-
from diffusion_webui.controlnet.controlnet_hed import stable_diffusion_controlnet_hed_app, stable_diffusion_controlnet_hed
|
4 |
-
from diffusion_webui.controlnet.controlnet_mlsd import stable_diffusion_controlnet_mlsd_app, stable_diffusion_controlnet_mlsd
|
5 |
-
from diffusion_webui.controlnet.controlnet_pose import stable_diffusion_controlnet_pose_app, stable_diffusion_controlnet_pose
|
6 |
-
from diffusion_webui.controlnet.controlnet_scribble import stable_diffusion_controlnet_scribble_app, stable_diffusion_controlnet_scribble
|
7 |
-
from diffusion_webui.controlnet.controlnet_seg import stable_diffusion_controlnet_seg_app, stable_diffusion_controlnet_seg
|
8 |
-
|
9 |
-
from diffusion_webui.stable_diffusion.text2img_app import stable_diffusion_text2img_app, stable_diffusion_text2img
|
10 |
-
from diffusion_webui.stable_diffusion.img2img_app import stable_diffusion_img2img_app, stable_diffusion_img2img
|
11 |
-
from diffusion_webui.stable_diffusion.inpaint_app import stable_diffusion_inpaint_app, stable_diffusion_inpaint
|
12 |
-
from diffusion_webui.stable_diffusion.keras_txt2img import keras_stable_diffusion, keras_stable_diffusion_app
|
13 |
-
|
14 |
-
|
15 |
import gradio as gr
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
app = gr.Blocks()
|
18 |
with app:
|
19 |
gr.HTML(
|
@@ -33,30 +33,30 @@ with app:
|
|
33 |
)
|
34 |
with gr.Row():
|
35 |
with gr.Column():
|
36 |
-
with gr.Tab(
|
37 |
stable_diffusion_text2img_app()
|
38 |
-
with gr.Tab(
|
39 |
stable_diffusion_img2img_app()
|
40 |
-
with gr.Tab(
|
41 |
stable_diffusion_inpaint_app()
|
42 |
-
|
43 |
-
with gr.Tab(
|
44 |
-
with gr.Tab(
|
45 |
stable_diffusion_controlnet_canny_app()
|
46 |
-
with gr.Tab(
|
47 |
stable_diffusion_controlnet_depth_app()
|
48 |
-
with gr.Tab(
|
49 |
stable_diffusion_controlnet_hed_app()
|
50 |
-
with gr.Tab(
|
51 |
stable_diffusion_controlnet_mlsd_app()
|
52 |
-
with gr.Tab(
|
53 |
stable_diffusion_controlnet_pose_app()
|
54 |
-
with gr.Tab(
|
55 |
stable_diffusion_controlnet_seg_app()
|
56 |
-
with gr.Tab(
|
57 |
stable_diffusion_controlnet_scribble_app()
|
58 |
-
|
59 |
-
with gr.Tab(
|
60 |
keras_diffusion_app = keras_stable_diffusion_app()
|
61 |
|
62 |
-
app.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from diffusion_webui.helpers import (
|
4 |
+
keras_stable_diffusion_app,
|
5 |
+
stable_diffusion_controlnet_canny_app,
|
6 |
+
stable_diffusion_controlnet_depth_app,
|
7 |
+
stable_diffusion_controlnet_hed_app,
|
8 |
+
stable_diffusion_controlnet_mlsd_app,
|
9 |
+
stable_diffusion_controlnet_pose_app,
|
10 |
+
stable_diffusion_controlnet_scribble_app,
|
11 |
+
stable_diffusion_controlnet_seg_app,
|
12 |
+
stable_diffusion_img2img_app,
|
13 |
+
stable_diffusion_inpaint_app,
|
14 |
+
stable_diffusion_text2img_app,
|
15 |
+
)
|
16 |
+
|
17 |
app = gr.Blocks()
|
18 |
with app:
|
19 |
gr.HTML(
|
|
|
33 |
)
|
34 |
with gr.Row():
|
35 |
with gr.Column():
|
36 |
+
with gr.Tab("Text2Img"):
|
37 |
stable_diffusion_text2img_app()
|
38 |
+
with gr.Tab("Img2Img"):
|
39 |
stable_diffusion_img2img_app()
|
40 |
+
with gr.Tab("Inpaint"):
|
41 |
stable_diffusion_inpaint_app()
|
42 |
+
|
43 |
+
with gr.Tab("ControlNet"):
|
44 |
+
with gr.Tab("Canny"):
|
45 |
stable_diffusion_controlnet_canny_app()
|
46 |
+
with gr.Tab("Depth"):
|
47 |
stable_diffusion_controlnet_depth_app()
|
48 |
+
with gr.Tab("HED"):
|
49 |
stable_diffusion_controlnet_hed_app()
|
50 |
+
with gr.Tab("MLSD"):
|
51 |
stable_diffusion_controlnet_mlsd_app()
|
52 |
+
with gr.Tab("Pose"):
|
53 |
stable_diffusion_controlnet_pose_app()
|
54 |
+
with gr.Tab("Seg"):
|
55 |
stable_diffusion_controlnet_seg_app()
|
56 |
+
with gr.Tab("Scribble"):
|
57 |
stable_diffusion_controlnet_scribble_app()
|
58 |
+
|
59 |
+
with gr.Tab("Keras Diffusion"):
|
60 |
keras_diffusion_app = keras_stable_diffusion_app()
|
61 |
|
62 |
+
app.launch(debug=True)
|
data/bash.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
black . --config pyproject.toml
|
2 |
+
isort .
|
data/test.png
ADDED
diffusion_webui/controlnet/controlnet_canny.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from PIL import Image
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
-
import
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
stable_model_list = [
|
12 |
"runwayml/stable-diffusion-v1-5",
|
@@ -15,23 +16,22 @@ stable_model_list = [
|
|
15 |
|
16 |
controlnet_canny_model_list = [
|
17 |
"lllyasviel/sd-controlnet-canny",
|
18 |
-
"thibaud/controlnet-sd21-canny-diffusers"
|
19 |
]
|
20 |
|
21 |
|
22 |
-
stable_prompt_list = [
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
stable_negative_prompt_list = [
|
28 |
-
"bad, ugly",
|
29 |
-
"deformed"
|
30 |
-
]
|
31 |
|
32 |
def controlnet_canny(
|
33 |
-
image_path:str,
|
34 |
-
controlnet_model_path:str,
|
35 |
):
|
36 |
image = Image.open(image_path)
|
37 |
image = np.array(image)
|
@@ -42,28 +42,29 @@ def controlnet_canny(
|
|
42 |
image = Image.fromarray(image)
|
43 |
|
44 |
controlnet = ControlNetModel.from_pretrained(
|
45 |
-
controlnet_model_path,
|
46 |
-
torch_dtype=torch.float16
|
47 |
)
|
48 |
return controlnet, image
|
49 |
|
50 |
|
51 |
def stable_diffusion_controlnet_canny(
|
52 |
-
image_path:str,
|
53 |
-
stable_model_path:str,
|
54 |
-
controlnet_model_path:str,
|
55 |
-
prompt:str,
|
56 |
-
negative_prompt:str,
|
57 |
-
guidance_scale:int,
|
58 |
-
num_inference_step:int,
|
59 |
-
|
60 |
-
|
61 |
-
controlnet, image = controlnet_canny(
|
62 |
-
|
|
|
|
|
63 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
64 |
-
pretrained_model_name_or_path=stable_model_path,
|
65 |
-
controlnet=controlnet,
|
66 |
-
safety_checker=None,
|
67 |
torch_dtype=torch.float16,
|
68 |
)
|
69 |
pipe.to("cuda")
|
@@ -71,11 +72,11 @@ def stable_diffusion_controlnet_canny(
|
|
71 |
pipe.enable_xformers_memory_efficient_attention()
|
72 |
|
73 |
output = pipe(
|
74 |
-
prompt
|
75 |
-
image
|
76 |
-
negative_prompt
|
77 |
-
num_inference_steps
|
78 |
-
guidance_scale
|
79 |
).images
|
80 |
|
81 |
return output[0]
|
@@ -86,56 +87,80 @@ def stable_diffusion_controlnet_canny_app():
|
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
88 |
controlnet_canny_image_file = gr.Image(
|
89 |
-
type=
|
90 |
-
label='Image'
|
91 |
)
|
92 |
|
93 |
controlnet_canny_stable_model_id = gr.Dropdown(
|
94 |
-
choices=stable_model_list,
|
95 |
-
value=stable_model_list[0],
|
96 |
-
label=
|
97 |
)
|
98 |
-
|
99 |
controlnet_canny_model_id = gr.Dropdown(
|
100 |
choices=controlnet_canny_model_list,
|
101 |
value=controlnet_canny_model_list[0],
|
102 |
-
label=
|
103 |
)
|
104 |
-
|
105 |
controlnet_canny_prompt = gr.Textbox(
|
106 |
-
lines=1,
|
107 |
-
value=stable_prompt_list[0],
|
108 |
-
label='Prompt'
|
109 |
)
|
110 |
|
111 |
controlnet_canny_negative_prompt = gr.Textbox(
|
112 |
-
lines=1,
|
113 |
-
value=stable_negative_prompt_list[0],
|
114 |
-
label=
|
115 |
)
|
116 |
|
117 |
with gr.Accordion("Advanced Options", open=False):
|
118 |
controlnet_canny_guidance_scale = gr.Slider(
|
119 |
-
minimum=0.1,
|
120 |
-
maximum=15,
|
121 |
-
step=0.1,
|
122 |
-
value=7.5,
|
123 |
-
label=
|
124 |
)
|
125 |
|
126 |
controlnet_canny_num_inference_step = gr.Slider(
|
127 |
-
minimum=1,
|
128 |
-
maximum=100,
|
129 |
-
step=1,
|
130 |
-
value=50,
|
131 |
-
label=
|
132 |
)
|
133 |
|
134 |
-
controlnet_canny_predict = gr.Button(value=
|
135 |
-
|
136 |
with gr.Column():
|
137 |
-
output_image = gr.Image(label=
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
controlnet_canny_predict.click(
|
140 |
fn=stable_diffusion_controlnet_canny,
|
141 |
inputs=[
|
|
|
1 |
+
import cv2
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
from diffusers import (
|
6 |
+
ControlNetModel,
|
7 |
+
StableDiffusionControlNetPipeline,
|
8 |
+
UniPCMultistepScheduler,
|
9 |
+
)
|
10 |
+
from PIL import Image
|
11 |
|
12 |
stable_model_list = [
|
13 |
"runwayml/stable-diffusion-v1-5",
|
|
|
16 |
|
17 |
controlnet_canny_model_list = [
|
18 |
"lllyasviel/sd-controlnet-canny",
|
19 |
+
"thibaud/controlnet-sd21-canny-diffusers",
|
20 |
]
|
21 |
|
22 |
|
23 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
24 |
+
|
25 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
26 |
+
|
27 |
+
data_list = [
|
28 |
+
"data/test.png",
|
29 |
+
]
|
30 |
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def controlnet_canny(
|
33 |
+
image_path: str,
|
34 |
+
controlnet_model_path: str,
|
35 |
):
|
36 |
image = Image.open(image_path)
|
37 |
image = np.array(image)
|
|
|
42 |
image = Image.fromarray(image)
|
43 |
|
44 |
controlnet = ControlNetModel.from_pretrained(
|
45 |
+
controlnet_model_path, torch_dtype=torch.float16
|
|
|
46 |
)
|
47 |
return controlnet, image
|
48 |
|
49 |
|
50 |
def stable_diffusion_controlnet_canny(
|
51 |
+
image_path: str,
|
52 |
+
stable_model_path: str,
|
53 |
+
controlnet_model_path: str,
|
54 |
+
prompt: str,
|
55 |
+
negative_prompt: str,
|
56 |
+
guidance_scale: int,
|
57 |
+
num_inference_step: int,
|
58 |
+
):
|
59 |
+
|
60 |
+
controlnet, image = controlnet_canny(
|
61 |
+
image_path=image_path, controlnet_model_path=controlnet_model_path
|
62 |
+
)
|
63 |
+
|
64 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
65 |
+
pretrained_model_name_or_path=stable_model_path,
|
66 |
+
controlnet=controlnet,
|
67 |
+
safety_checker=None,
|
68 |
torch_dtype=torch.float16,
|
69 |
)
|
70 |
pipe.to("cuda")
|
|
|
72 |
pipe.enable_xformers_memory_efficient_attention()
|
73 |
|
74 |
output = pipe(
|
75 |
+
prompt=prompt,
|
76 |
+
image=image,
|
77 |
+
negative_prompt=negative_prompt,
|
78 |
+
num_inference_steps=num_inference_step,
|
79 |
+
guidance_scale=guidance_scale,
|
80 |
).images
|
81 |
|
82 |
return output[0]
|
|
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
controlnet_canny_image_file = gr.Image(
|
90 |
+
type="filepath", label="Image"
|
|
|
91 |
)
|
92 |
|
93 |
controlnet_canny_stable_model_id = gr.Dropdown(
|
94 |
+
choices=stable_model_list,
|
95 |
+
value=stable_model_list[0],
|
96 |
+
label="Stable Model Id",
|
97 |
)
|
98 |
+
|
99 |
controlnet_canny_model_id = gr.Dropdown(
|
100 |
choices=controlnet_canny_model_list,
|
101 |
value=controlnet_canny_model_list[0],
|
102 |
+
label="Controlnet Model Id",
|
103 |
)
|
104 |
+
|
105 |
controlnet_canny_prompt = gr.Textbox(
|
106 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
107 |
)
|
108 |
|
109 |
controlnet_canny_negative_prompt = gr.Textbox(
|
110 |
+
lines=1,
|
111 |
+
value=stable_negative_prompt_list[0],
|
112 |
+
label="Negative Prompt",
|
113 |
)
|
114 |
|
115 |
with gr.Accordion("Advanced Options", open=False):
|
116 |
controlnet_canny_guidance_scale = gr.Slider(
|
117 |
+
minimum=0.1,
|
118 |
+
maximum=15,
|
119 |
+
step=0.1,
|
120 |
+
value=7.5,
|
121 |
+
label="Guidance Scale",
|
122 |
)
|
123 |
|
124 |
controlnet_canny_num_inference_step = gr.Slider(
|
125 |
+
minimum=1,
|
126 |
+
maximum=100,
|
127 |
+
step=1,
|
128 |
+
value=50,
|
129 |
+
label="Num Inference Step",
|
130 |
)
|
131 |
|
132 |
+
controlnet_canny_predict = gr.Button(value="Generator")
|
133 |
+
|
134 |
with gr.Column():
|
135 |
+
output_image = gr.Image(label="Output")
|
136 |
+
|
137 |
+
gr.Examples(
|
138 |
+
fn=stable_diffusion_controlnet_canny,
|
139 |
+
examples=[
|
140 |
+
[
|
141 |
+
data_list[0],
|
142 |
+
stable_model_list[0],
|
143 |
+
controlnet_canny_model_list[0],
|
144 |
+
stable_prompt_list[0],
|
145 |
+
stable_negative_prompt_list[0],
|
146 |
+
7.5,
|
147 |
+
50,
|
148 |
+
]
|
149 |
+
],
|
150 |
+
inputs=[
|
151 |
+
controlnet_canny_image_file,
|
152 |
+
controlnet_canny_stable_model_id,
|
153 |
+
controlnet_canny_model_id,
|
154 |
+
controlnet_canny_prompt,
|
155 |
+
controlnet_canny_negative_prompt,
|
156 |
+
controlnet_canny_guidance_scale,
|
157 |
+
controlnet_canny_num_inference_step,
|
158 |
+
],
|
159 |
+
outputs=[output_image],
|
160 |
+
cache_examples=False,
|
161 |
+
label="Controlnet Canny Example",
|
162 |
+
)
|
163 |
+
|
164 |
controlnet_canny_predict.click(
|
165 |
fn=stable_diffusion_controlnet_canny,
|
166 |
inputs=[
|
diffusion_webui/controlnet/controlnet_depth.py
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler )
|
3 |
-
|
4 |
-
from transformers import pipeline
|
5 |
-
from PIL import Image
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
stable_model_list = [
|
11 |
"runwayml/stable-diffusion-v1-5",
|
@@ -13,27 +15,25 @@ stable_model_list = [
|
|
13 |
]
|
14 |
|
15 |
controlnet_depth_model_list = [
|
16 |
-
"
|
17 |
-
"thibaud/controlnet-sd21-depth-diffusers"
|
18 |
]
|
19 |
|
20 |
|
21 |
-
stable_prompt_list = [
|
22 |
-
|
23 |
-
|
24 |
-
]
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
]
|
30 |
|
31 |
|
32 |
-
def controlnet_depth(image_path:str, depth_model_path:str):
|
33 |
-
depth_estimator = pipeline(
|
34 |
|
35 |
image = Image.open(image_path)
|
36 |
-
image = depth_estimator(image)[
|
37 |
image = np.array(image)
|
38 |
image = image[:, :, None]
|
39 |
image = np.concatenate([image, image, image], axis=2)
|
@@ -45,23 +45,26 @@ def controlnet_depth(image_path:str, depth_model_path:str):
|
|
45 |
|
46 |
return controlnet, image
|
47 |
|
48 |
-
def stable_diffusion_controlnet_depth(
|
49 |
-
image_path:str,
|
50 |
-
stable_model_path:str,
|
51 |
-
depth_model_path:str,
|
52 |
-
prompt:str,
|
53 |
-
negative_prompt:str,
|
54 |
-
guidance_scale:int,
|
55 |
-
num_inference_step:int,
|
56 |
-
):
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
61 |
-
pretrained_model_name_or_path=stable_model_path,
|
62 |
-
controlnet=controlnet,
|
63 |
-
safety_checker=None,
|
64 |
-
torch_dtype=torch.float16
|
65 |
)
|
66 |
|
67 |
pipe.to("cuda")
|
@@ -69,11 +72,11 @@ def stable_diffusion_controlnet_depth(
|
|
69 |
pipe.enable_xformers_memory_efficient_attention()
|
70 |
|
71 |
output = pipe(
|
72 |
-
prompt
|
73 |
-
image
|
74 |
-
negative_prompt
|
75 |
-
num_inference_steps
|
76 |
-
guidance_scale
|
77 |
).images
|
78 |
|
79 |
return output[0]
|
@@ -84,56 +87,80 @@ def stable_diffusion_controlnet_depth_app():
|
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
controlnet_depth_image_file = gr.Image(
|
87 |
-
type=
|
88 |
-
label='Image'
|
89 |
)
|
90 |
|
91 |
controlnet_depth_stable_model_id = gr.Dropdown(
|
92 |
-
choices=stable_model_list,
|
93 |
-
value=stable_model_list[0],
|
94 |
-
label=
|
95 |
)
|
96 |
|
97 |
controlnet_depth_model_id = gr.Dropdown(
|
98 |
choices=controlnet_depth_model_list,
|
99 |
value=controlnet_depth_model_list[0],
|
100 |
-
label=
|
101 |
)
|
102 |
-
|
103 |
controlnet_depth_prompt = gr.Textbox(
|
104 |
-
lines=1,
|
105 |
-
value=stable_prompt_list[0],
|
106 |
-
label='Prompt'
|
107 |
)
|
108 |
|
109 |
controlnet_depth_negative_prompt = gr.Textbox(
|
110 |
-
lines=1,
|
111 |
-
value=stable_negative_prompt_list[0],
|
112 |
-
label=
|
113 |
)
|
114 |
|
115 |
with gr.Accordion("Advanced Options", open=False):
|
116 |
controlnet_depth_guidance_scale = gr.Slider(
|
117 |
-
minimum=0.1,
|
118 |
-
maximum=15,
|
119 |
-
step=0.1,
|
120 |
-
value=7.5,
|
121 |
-
label=
|
122 |
)
|
123 |
|
124 |
controlnet_depth_num_inference_step = gr.Slider(
|
125 |
-
minimum=1,
|
126 |
-
maximum=100,
|
127 |
-
step=1,
|
128 |
-
value=50,
|
129 |
-
label=
|
130 |
)
|
131 |
|
132 |
-
controlnet_depth_predict = gr.Button(value=
|
133 |
-
|
134 |
with gr.Column():
|
135 |
-
output_image = gr.Image(label=
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
controlnet_depth_predict.click(
|
138 |
fn=stable_diffusion_controlnet_depth,
|
139 |
inputs=[
|
@@ -145,5 +172,5 @@ def stable_diffusion_controlnet_depth_app():
|
|
145 |
controlnet_depth_guidance_scale,
|
146 |
controlnet_depth_num_inference_step,
|
147 |
],
|
148 |
-
outputs=output_image
|
149 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from diffusers import (
|
5 |
+
ControlNetModel,
|
6 |
+
StableDiffusionControlNetPipeline,
|
7 |
+
UniPCMultistepScheduler,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
+
from transformers import pipeline
|
11 |
|
12 |
stable_model_list = [
|
13 |
"runwayml/stable-diffusion-v1-5",
|
|
|
15 |
]
|
16 |
|
17 |
controlnet_depth_model_list = [
|
18 |
+
"lllyasviel/sd-controlnet-depth",
|
19 |
+
"thibaud/controlnet-sd21-depth-diffusers",
|
20 |
]
|
21 |
|
22 |
|
23 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
24 |
+
|
25 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
26 |
|
27 |
+
data_list = [
|
28 |
+
"data/test.png",
|
29 |
+
]
|
|
|
30 |
|
31 |
|
32 |
+
def controlnet_depth(image_path: str, depth_model_path: str):
|
33 |
+
depth_estimator = pipeline("depth-estimation")
|
34 |
|
35 |
image = Image.open(image_path)
|
36 |
+
image = depth_estimator(image)["depth"]
|
37 |
image = np.array(image)
|
38 |
image = image[:, :, None]
|
39 |
image = np.concatenate([image, image, image], axis=2)
|
|
|
45 |
|
46 |
return controlnet, image
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
def stable_diffusion_controlnet_depth(
|
50 |
+
image_path: str,
|
51 |
+
stable_model_path: str,
|
52 |
+
depth_model_path: str,
|
53 |
+
prompt: str,
|
54 |
+
negative_prompt: str,
|
55 |
+
guidance_scale: int,
|
56 |
+
num_inference_step: int,
|
57 |
+
):
|
58 |
+
|
59 |
+
controlnet, image = controlnet_depth(
|
60 |
+
image_path=image_path, depth_model_path=depth_model_path
|
61 |
+
)
|
62 |
|
63 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
64 |
+
pretrained_model_name_or_path=stable_model_path,
|
65 |
+
controlnet=controlnet,
|
66 |
+
safety_checker=None,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
)
|
69 |
|
70 |
pipe.to("cuda")
|
|
|
72 |
pipe.enable_xformers_memory_efficient_attention()
|
73 |
|
74 |
output = pipe(
|
75 |
+
prompt=prompt,
|
76 |
+
image=image,
|
77 |
+
negative_prompt=negative_prompt,
|
78 |
+
num_inference_steps=num_inference_step,
|
79 |
+
guidance_scale=guidance_scale,
|
80 |
).images
|
81 |
|
82 |
return output[0]
|
|
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
controlnet_depth_image_file = gr.Image(
|
90 |
+
type="filepath", label="Image"
|
|
|
91 |
)
|
92 |
|
93 |
controlnet_depth_stable_model_id = gr.Dropdown(
|
94 |
+
choices=stable_model_list,
|
95 |
+
value=stable_model_list[0],
|
96 |
+
label="Stable Model Id",
|
97 |
)
|
98 |
|
99 |
controlnet_depth_model_id = gr.Dropdown(
|
100 |
choices=controlnet_depth_model_list,
|
101 |
value=controlnet_depth_model_list[0],
|
102 |
+
label="ControlNet Model Id",
|
103 |
)
|
104 |
+
|
105 |
controlnet_depth_prompt = gr.Textbox(
|
106 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
107 |
)
|
108 |
|
109 |
controlnet_depth_negative_prompt = gr.Textbox(
|
110 |
+
lines=1,
|
111 |
+
value=stable_negative_prompt_list[0],
|
112 |
+
label="Negative Prompt",
|
113 |
)
|
114 |
|
115 |
with gr.Accordion("Advanced Options", open=False):
|
116 |
controlnet_depth_guidance_scale = gr.Slider(
|
117 |
+
minimum=0.1,
|
118 |
+
maximum=15,
|
119 |
+
step=0.1,
|
120 |
+
value=7.5,
|
121 |
+
label="Guidance Scale",
|
122 |
)
|
123 |
|
124 |
controlnet_depth_num_inference_step = gr.Slider(
|
125 |
+
minimum=1,
|
126 |
+
maximum=100,
|
127 |
+
step=1,
|
128 |
+
value=50,
|
129 |
+
label="Num Inference Step",
|
130 |
)
|
131 |
|
132 |
+
controlnet_depth_predict = gr.Button(value="Generator")
|
133 |
+
|
134 |
with gr.Column():
|
135 |
+
output_image = gr.Image(label="Output")
|
136 |
+
|
137 |
+
gr.Examples(
|
138 |
+
fn=stable_diffusion_controlnet_depth,
|
139 |
+
examples=[
|
140 |
+
[
|
141 |
+
data_list[0],
|
142 |
+
stable_model_list[0],
|
143 |
+
controlnet_depth_model_list[0],
|
144 |
+
stable_prompt_list[0],
|
145 |
+
stable_negative_prompt_list[0],
|
146 |
+
7.5,
|
147 |
+
50,
|
148 |
+
]
|
149 |
+
],
|
150 |
+
inputs=[
|
151 |
+
controlnet_depth_image_file,
|
152 |
+
controlnet_depth_stable_model_id,
|
153 |
+
controlnet_depth_model_id,
|
154 |
+
controlnet_depth_prompt,
|
155 |
+
controlnet_depth_negative_prompt,
|
156 |
+
controlnet_depth_guidance_scale,
|
157 |
+
controlnet_depth_num_inference_step,
|
158 |
+
],
|
159 |
+
outputs=[output_image],
|
160 |
+
cache_examples=False,
|
161 |
+
label="ControlNet Depth Example",
|
162 |
+
)
|
163 |
+
|
164 |
controlnet_depth_predict.click(
|
165 |
fn=stable_diffusion_controlnet_depth,
|
166 |
inputs=[
|
|
|
172 |
controlnet_depth_guidance_scale,
|
173 |
controlnet_depth_num_inference_step,
|
174 |
],
|
175 |
+
outputs=output_image,
|
176 |
)
|
diffusion_webui/controlnet/controlnet_hed.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import HEDdetector
|
5 |
-
from PIL import Image
|
6 |
import gradio as gr
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
stable_model_list = [
|
10 |
"runwayml/stable-diffusion-v1-5",
|
@@ -12,51 +14,51 @@ stable_model_list = [
|
|
12 |
]
|
13 |
|
14 |
controlnet_hed_model_list = [
|
15 |
-
"
|
16 |
-
"thibaud/controlnet-sd21-hed-diffusers"
|
17 |
]
|
18 |
|
19 |
-
stable_prompt_list = [
|
20 |
-
|
21 |
-
|
22 |
-
]
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
]
|
28 |
|
29 |
|
30 |
-
def controlnet_hed(image_path:str, controlnet_hed_model_path:str):
|
31 |
-
hed = HEDdetector.from_pretrained(
|
32 |
|
33 |
image = Image.open(image_path)
|
34 |
image = hed(image)
|
35 |
|
36 |
controlnet = ControlNetModel.from_pretrained(
|
37 |
-
controlnet_hed_model_path,
|
38 |
-
torch_dtype=torch.float16
|
39 |
)
|
40 |
return controlnet, image
|
41 |
|
42 |
|
43 |
def stable_diffusion_controlnet_hed(
|
44 |
-
image_path:str,
|
45 |
-
stable_model_path:str,
|
46 |
-
controlnet_hed_model_path:str,
|
47 |
-
prompt:str,
|
48 |
-
negative_prompt:str,
|
49 |
-
guidance_scale:int,
|
50 |
-
num_inference_step:int,
|
51 |
-
|
52 |
-
|
53 |
-
controlnet, image = controlnet_hed(
|
|
|
|
|
|
|
54 |
|
55 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
56 |
-
pretrained_model_name_or_path=stable_model_path,
|
57 |
-
controlnet=controlnet,
|
58 |
-
safety_checker=None,
|
59 |
-
torch_dtype=torch.float16
|
60 |
)
|
61 |
|
62 |
pipe.to("cuda")
|
@@ -64,71 +66,95 @@ def stable_diffusion_controlnet_hed(
|
|
64 |
pipe.enable_xformers_memory_efficient_attention()
|
65 |
|
66 |
output = pipe(
|
67 |
-
prompt
|
68 |
-
image
|
69 |
-
negative_prompt
|
70 |
-
num_inference_steps
|
71 |
-
guidance_scale
|
72 |
).images
|
73 |
|
74 |
return output[0]
|
75 |
|
|
|
76 |
def stable_diffusion_controlnet_hed_app():
|
77 |
with gr.Blocks():
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
controlnet_hed_image_file = gr.Image(
|
81 |
-
type=
|
82 |
-
label='Image'
|
83 |
)
|
84 |
|
85 |
controlnet_hed_stable_model_id = gr.Dropdown(
|
86 |
-
choices=stable_model_list,
|
87 |
-
value=stable_model_list[0],
|
88 |
-
label=
|
89 |
)
|
90 |
-
|
91 |
controlnet_hed_model_id = gr.Dropdown(
|
92 |
choices=stable_model_list,
|
93 |
value=stable_model_list[1],
|
94 |
-
label=
|
95 |
)
|
96 |
|
97 |
controlnet_hed_prompt = gr.Textbox(
|
98 |
-
lines=1,
|
99 |
-
value=stable_prompt_list[0],
|
100 |
-
label='Prompt'
|
101 |
)
|
102 |
|
103 |
controlnet_hed_negative_prompt = gr.Textbox(
|
104 |
-
lines=1,
|
105 |
-
value=stable_negative_prompt_list[0],
|
106 |
-
label=
|
107 |
)
|
108 |
|
109 |
with gr.Accordion("Advanced Options", open=False):
|
110 |
controlnet_hed_guidance_scale = gr.Slider(
|
111 |
-
minimum=0.1,
|
112 |
-
maximum=15,
|
113 |
-
step=0.1,
|
114 |
-
value=7.5,
|
115 |
-
label=
|
116 |
)
|
117 |
|
118 |
controlnet_hed_num_inference_step = gr.Slider(
|
119 |
-
minimum=1,
|
120 |
-
maximum=100,
|
121 |
-
step=1,
|
122 |
-
value=50,
|
123 |
-
label=
|
124 |
)
|
125 |
|
126 |
-
controlnet_hed_predict = gr.Button(value=
|
127 |
-
|
128 |
-
|
129 |
with gr.Column():
|
130 |
-
output_image = gr.Image(label=
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
controlnet_hed_predict.click(
|
133 |
fn=stable_diffusion_controlnet_hed,
|
134 |
inputs=[
|
@@ -140,6 +166,5 @@ def stable_diffusion_controlnet_hed_app():
|
|
140 |
controlnet_hed_guidance_scale,
|
141 |
controlnet_hed_num_inference_step,
|
142 |
],
|
143 |
-
outputs=[output_image]
|
144 |
)
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from controlnet_aux import HEDdetector
|
4 |
+
from diffusers import (
|
5 |
+
ControlNetModel,
|
6 |
+
StableDiffusionControlNetPipeline,
|
7 |
+
UniPCMultistepScheduler,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
|
11 |
stable_model_list = [
|
12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
14 |
]
|
15 |
|
16 |
controlnet_hed_model_list = [
|
17 |
+
"lllyasviel/sd-controlnet-hed",
|
18 |
+
"thibaud/controlnet-sd21-hed-diffusers",
|
19 |
]
|
20 |
|
21 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
22 |
+
|
23 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
24 |
|
25 |
+
data_list = [
|
26 |
+
"data/test.png",
|
27 |
+
]
|
|
|
28 |
|
29 |
|
30 |
+
def controlnet_hed(image_path: str, controlnet_hed_model_path: str):
|
31 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
32 |
|
33 |
image = Image.open(image_path)
|
34 |
image = hed(image)
|
35 |
|
36 |
controlnet = ControlNetModel.from_pretrained(
|
37 |
+
controlnet_hed_model_path, torch_dtype=torch.float16
|
|
|
38 |
)
|
39 |
return controlnet, image
|
40 |
|
41 |
|
42 |
def stable_diffusion_controlnet_hed(
|
43 |
+
image_path: str,
|
44 |
+
stable_model_path: str,
|
45 |
+
controlnet_hed_model_path: str,
|
46 |
+
prompt: str,
|
47 |
+
negative_prompt: str,
|
48 |
+
guidance_scale: int,
|
49 |
+
num_inference_step: int,
|
50 |
+
):
|
51 |
+
|
52 |
+
controlnet, image = controlnet_hed(
|
53 |
+
image_path=image_path,
|
54 |
+
controlnet_hed_model_path=controlnet_hed_model_path,
|
55 |
+
)
|
56 |
|
57 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
58 |
+
pretrained_model_name_or_path=stable_model_path,
|
59 |
+
controlnet=controlnet,
|
60 |
+
safety_checker=None,
|
61 |
+
torch_dtype=torch.float16,
|
62 |
)
|
63 |
|
64 |
pipe.to("cuda")
|
|
|
66 |
pipe.enable_xformers_memory_efficient_attention()
|
67 |
|
68 |
output = pipe(
|
69 |
+
prompt=prompt,
|
70 |
+
image=image,
|
71 |
+
negative_prompt=negative_prompt,
|
72 |
+
num_inference_steps=num_inference_step,
|
73 |
+
guidance_scale=guidance_scale,
|
74 |
).images
|
75 |
|
76 |
return output[0]
|
77 |
|
78 |
+
|
79 |
def stable_diffusion_controlnet_hed_app():
|
80 |
with gr.Blocks():
|
81 |
with gr.Row():
|
82 |
with gr.Column():
|
83 |
controlnet_hed_image_file = gr.Image(
|
84 |
+
type="filepath", label="Image"
|
|
|
85 |
)
|
86 |
|
87 |
controlnet_hed_stable_model_id = gr.Dropdown(
|
88 |
+
choices=stable_model_list,
|
89 |
+
value=stable_model_list[0],
|
90 |
+
label="Stable Model Id",
|
91 |
)
|
92 |
+
|
93 |
controlnet_hed_model_id = gr.Dropdown(
|
94 |
choices=stable_model_list,
|
95 |
value=stable_model_list[1],
|
96 |
+
label="ControlNet Model Id",
|
97 |
)
|
98 |
|
99 |
controlnet_hed_prompt = gr.Textbox(
|
100 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
101 |
)
|
102 |
|
103 |
controlnet_hed_negative_prompt = gr.Textbox(
|
104 |
+
lines=1,
|
105 |
+
value=stable_negative_prompt_list[0],
|
106 |
+
label="Negative Prompt",
|
107 |
)
|
108 |
|
109 |
with gr.Accordion("Advanced Options", open=False):
|
110 |
controlnet_hed_guidance_scale = gr.Slider(
|
111 |
+
minimum=0.1,
|
112 |
+
maximum=15,
|
113 |
+
step=0.1,
|
114 |
+
value=7.5,
|
115 |
+
label="Guidance Scale",
|
116 |
)
|
117 |
|
118 |
controlnet_hed_num_inference_step = gr.Slider(
|
119 |
+
minimum=1,
|
120 |
+
maximum=100,
|
121 |
+
step=1,
|
122 |
+
value=50,
|
123 |
+
label="Num Inference Step",
|
124 |
)
|
125 |
|
126 |
+
controlnet_hed_predict = gr.Button(value="Generator")
|
127 |
+
|
|
|
128 |
with gr.Column():
|
129 |
+
output_image = gr.Image(label="Output")
|
130 |
+
|
131 |
+
gr.Examples(
|
132 |
+
fn=stable_diffusion_controlnet_hed,
|
133 |
+
examples=[
|
134 |
+
[
|
135 |
+
data_list[0],
|
136 |
+
stable_model_list[0],
|
137 |
+
controlnet_hed_model_list[0],
|
138 |
+
stable_prompt_list[0],
|
139 |
+
stable_negative_prompt_list[0],
|
140 |
+
7.5,
|
141 |
+
50,
|
142 |
+
]
|
143 |
+
],
|
144 |
+
inputs=[
|
145 |
+
controlnet_hed_image_file,
|
146 |
+
controlnet_hed_stable_model_id,
|
147 |
+
controlnet_hed_model_id,
|
148 |
+
controlnet_hed_prompt,
|
149 |
+
controlnet_hed_negative_prompt,
|
150 |
+
controlnet_hed_guidance_scale,
|
151 |
+
controlnet_hed_num_inference_step,
|
152 |
+
],
|
153 |
+
outputs=[output_image],
|
154 |
+
cache_examples=False,
|
155 |
+
label="ControlNet HED Example",
|
156 |
+
)
|
157 |
+
|
158 |
controlnet_hed_predict.click(
|
159 |
fn=stable_diffusion_controlnet_hed,
|
160 |
inputs=[
|
|
|
166 |
controlnet_hed_guidance_scale,
|
167 |
controlnet_hed_num_inference_step,
|
168 |
],
|
169 |
+
outputs=[output_image],
|
170 |
)
|
|
diffusion_webui/controlnet/controlnet_mlsd.py
CHANGED
@@ -1,59 +1,56 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import MLSDdetector
|
5 |
-
from PIL import Image
|
6 |
import gradio as gr
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
stable_model_list = [
|
10 |
"runwayml/stable-diffusion-v1-5",
|
11 |
-
"stabilityai/stable-diffusion-2",
|
12 |
-
"stabilityai/stable-diffusion-2-base",
|
13 |
-
"stabilityai/stable-diffusion-2-1",
|
14 |
-
"stabilityai/stable-diffusion-2-1-base"
|
15 |
]
|
16 |
|
17 |
-
stable_prompt_list = [
|
18 |
-
"a photo of a man.",
|
19 |
-
"a photo of a girl."
|
20 |
-
]
|
21 |
|
22 |
-
stable_negative_prompt_list = [
|
23 |
-
"bad, ugly",
|
24 |
-
"deformed"
|
25 |
-
]
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
30 |
|
31 |
image = Image.open(image_path)
|
32 |
image = mlsd(image)
|
33 |
|
34 |
controlnet = ControlNetModel.from_pretrained(
|
35 |
-
"
|
36 |
-
torch_dtype=torch.float16
|
37 |
)
|
38 |
|
39 |
return controlnet, image
|
40 |
|
|
|
41 |
def stable_diffusion_controlnet_mlsd(
|
42 |
-
image_path:str,
|
43 |
-
model_path:str,
|
44 |
-
prompt:str,
|
45 |
-
negative_prompt:str,
|
46 |
-
guidance_scale:int,
|
47 |
-
num_inference_step:int,
|
48 |
-
|
49 |
|
50 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
51 |
|
52 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
53 |
-
pretrained_model_name_or_path=model_path,
|
54 |
-
controlnet=controlnet,
|
55 |
-
safety_checker=None,
|
56 |
-
torch_dtype=torch.float16
|
57 |
)
|
58 |
|
59 |
pipe.to("cuda")
|
@@ -61,64 +58,87 @@ def stable_diffusion_controlnet_mlsd(
|
|
61 |
pipe.enable_xformers_memory_efficient_attention()
|
62 |
|
63 |
output = pipe(
|
64 |
-
prompt
|
65 |
-
image
|
66 |
-
negative_prompt
|
67 |
-
num_inference_steps
|
68 |
-
guidance_scale
|
69 |
).images
|
70 |
|
71 |
return output[0]
|
72 |
|
|
|
73 |
def stable_diffusion_controlnet_mlsd_app():
|
74 |
with gr.Blocks():
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
77 |
controlnet_mlsd_image_file = gr.Image(
|
78 |
-
type=
|
79 |
-
label='Image'
|
80 |
)
|
81 |
|
82 |
controlnet_mlsd_model_id = gr.Dropdown(
|
83 |
-
choices=stable_model_list,
|
84 |
-
value=stable_model_list[0],
|
85 |
-
label=
|
86 |
)
|
87 |
|
88 |
controlnet_mlsd_prompt = gr.Textbox(
|
89 |
-
lines=1,
|
90 |
-
value=stable_prompt_list[0],
|
91 |
-
label='Prompt'
|
92 |
)
|
93 |
|
94 |
controlnet_mlsd_negative_prompt = gr.Textbox(
|
95 |
-
lines=1,
|
96 |
-
value=stable_negative_prompt_list[0],
|
97 |
-
label=
|
98 |
)
|
99 |
|
100 |
with gr.Accordion("Advanced Options", open=False):
|
101 |
controlnet_mlsd_guidance_scale = gr.Slider(
|
102 |
-
minimum=0.1,
|
103 |
-
maximum=15,
|
104 |
-
step=0.1,
|
105 |
-
value=7.5,
|
106 |
-
label=
|
107 |
)
|
108 |
|
109 |
controlnet_mlsd_num_inference_step = gr.Slider(
|
110 |
-
minimum=1,
|
111 |
-
maximum=100,
|
112 |
-
step=1,
|
113 |
-
value=50,
|
114 |
-
label=
|
115 |
)
|
116 |
|
117 |
-
controlnet_mlsd_predict = gr.Button(value=
|
118 |
|
119 |
with gr.Column():
|
120 |
-
output_image = gr.Image(label=
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
controlnet_mlsd_predict.click(
|
123 |
fn=stable_diffusion_controlnet_mlsd,
|
124 |
inputs=[
|
@@ -127,7 +147,7 @@ def stable_diffusion_controlnet_mlsd_app():
|
|
127 |
controlnet_mlsd_prompt,
|
128 |
controlnet_mlsd_negative_prompt,
|
129 |
controlnet_mlsd_guidance_scale,
|
130 |
-
controlnet_mlsd_num_inference_step
|
131 |
],
|
132 |
-
outputs=output_image
|
133 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from controlnet_aux import MLSDdetector
|
4 |
+
from diffusers import (
|
5 |
+
ControlNetModel,
|
6 |
+
StableDiffusionControlNetPipeline,
|
7 |
+
UniPCMultistepScheduler,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
|
11 |
stable_model_list = [
|
12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
|
|
|
|
|
13 |
]
|
14 |
|
15 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
16 |
|
17 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
|
|
|
18 |
|
19 |
+
data_list = [
|
20 |
+
"data/test.png",
|
21 |
+
]
|
22 |
|
23 |
+
|
24 |
+
def controlnet_mlsd(image_path: str):
|
25 |
+
mlsd = MLSDdetector.from_pretrained("lllyasviel/ControlNet")
|
26 |
|
27 |
image = Image.open(image_path)
|
28 |
image = mlsd(image)
|
29 |
|
30 |
controlnet = ControlNetModel.from_pretrained(
|
31 |
+
"lllyasviel/sd-controlnet-mlsd",
|
32 |
+
torch_dtype=torch.float16,
|
33 |
)
|
34 |
|
35 |
return controlnet, image
|
36 |
|
37 |
+
|
38 |
def stable_diffusion_controlnet_mlsd(
|
39 |
+
image_path: str,
|
40 |
+
model_path: str,
|
41 |
+
prompt: str,
|
42 |
+
negative_prompt: str,
|
43 |
+
guidance_scale: int,
|
44 |
+
num_inference_step: int,
|
45 |
+
):
|
46 |
|
47 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
48 |
|
49 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
50 |
+
pretrained_model_name_or_path=model_path,
|
51 |
+
controlnet=controlnet,
|
52 |
+
safety_checker=None,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
)
|
55 |
|
56 |
pipe.to("cuda")
|
|
|
58 |
pipe.enable_xformers_memory_efficient_attention()
|
59 |
|
60 |
output = pipe(
|
61 |
+
prompt=prompt,
|
62 |
+
image=image,
|
63 |
+
negative_prompt=negative_prompt,
|
64 |
+
num_inference_steps=num_inference_step,
|
65 |
+
guidance_scale=guidance_scale,
|
66 |
).images
|
67 |
|
68 |
return output[0]
|
69 |
|
70 |
+
|
71 |
def stable_diffusion_controlnet_mlsd_app():
|
72 |
with gr.Blocks():
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
controlnet_mlsd_image_file = gr.Image(
|
76 |
+
type="filepath", label="Image"
|
|
|
77 |
)
|
78 |
|
79 |
controlnet_mlsd_model_id = gr.Dropdown(
|
80 |
+
choices=stable_model_list,
|
81 |
+
value=stable_model_list[0],
|
82 |
+
label="Stable Model Id",
|
83 |
)
|
84 |
|
85 |
controlnet_mlsd_prompt = gr.Textbox(
|
86 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
87 |
)
|
88 |
|
89 |
controlnet_mlsd_negative_prompt = gr.Textbox(
|
90 |
+
lines=1,
|
91 |
+
value=stable_negative_prompt_list[0],
|
92 |
+
label="Negative Prompt",
|
93 |
)
|
94 |
|
95 |
with gr.Accordion("Advanced Options", open=False):
|
96 |
controlnet_mlsd_guidance_scale = gr.Slider(
|
97 |
+
minimum=0.1,
|
98 |
+
maximum=15,
|
99 |
+
step=0.1,
|
100 |
+
value=7.5,
|
101 |
+
label="Guidance Scale",
|
102 |
)
|
103 |
|
104 |
controlnet_mlsd_num_inference_step = gr.Slider(
|
105 |
+
minimum=1,
|
106 |
+
maximum=100,
|
107 |
+
step=1,
|
108 |
+
value=50,
|
109 |
+
label="Num Inference Step",
|
110 |
)
|
111 |
|
112 |
+
controlnet_mlsd_predict = gr.Button(value="Generator")
|
113 |
|
114 |
with gr.Column():
|
115 |
+
output_image = gr.Image(label="Output")
|
116 |
+
|
117 |
+
gr.Examples(
|
118 |
+
fn=stable_diffusion_controlnet_mlsd,
|
119 |
+
examples=[
|
120 |
+
[
|
121 |
+
data_list[0],
|
122 |
+
stable_model_list[0],
|
123 |
+
stable_prompt_list[0],
|
124 |
+
stable_negative_prompt_list[0],
|
125 |
+
7.5,
|
126 |
+
50,
|
127 |
+
]
|
128 |
+
],
|
129 |
+
inputs=[
|
130 |
+
controlnet_mlsd_image_file,
|
131 |
+
controlnet_mlsd_model_id,
|
132 |
+
controlnet_mlsd_prompt,
|
133 |
+
controlnet_mlsd_negative_prompt,
|
134 |
+
controlnet_mlsd_guidance_scale,
|
135 |
+
controlnet_mlsd_num_inference_step,
|
136 |
+
],
|
137 |
+
outputs=[output_image],
|
138 |
+
label="ControlNet-MLSD Example",
|
139 |
+
cache_examples=False,
|
140 |
+
)
|
141 |
+
|
142 |
controlnet_mlsd_predict.click(
|
143 |
fn=stable_diffusion_controlnet_mlsd,
|
144 |
inputs=[
|
|
|
147 |
controlnet_mlsd_prompt,
|
148 |
controlnet_mlsd_negative_prompt,
|
149 |
controlnet_mlsd_guidance_scale,
|
150 |
+
controlnet_mlsd_num_inference_step,
|
151 |
],
|
152 |
+
outputs=output_image,
|
153 |
)
|
diffusion_webui/controlnet/controlnet_pose.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import OpenposeDetector
|
5 |
-
|
6 |
-
from PIL import Image
|
7 |
import gradio as gr
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
stable_model_list = [
|
11 |
"runwayml/stable-diffusion-v1-5",
|
@@ -13,51 +14,52 @@ stable_model_list = [
|
|
13 |
]
|
14 |
|
15 |
controlnet_pose_model_list = [
|
16 |
-
"
|
17 |
-
"thibaud/controlnet-sd21-openpose-diffusers"
|
18 |
]
|
19 |
|
20 |
-
stable_prompt_list = [
|
21 |
-
"a photo of a man.",
|
22 |
-
"a photo of a girl."
|
23 |
-
]
|
24 |
|
25 |
-
stable_negative_prompt_list = [
|
26 |
-
"bad, ugly",
|
27 |
-
"deformed"
|
28 |
-
]
|
29 |
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
image = Image.open(image_path)
|
35 |
image = openpose(image)
|
36 |
|
37 |
controlnet = ControlNetModel.from_pretrained(
|
38 |
-
controlnet_pose_model_path,
|
39 |
-
torch_dtype=torch.float16
|
40 |
)
|
41 |
|
42 |
return controlnet, image
|
43 |
|
44 |
-
def stable_diffusion_controlnet_pose(
|
45 |
-
image_path:str,
|
46 |
-
stable_model_path:str,
|
47 |
-
controlnet_pose_model_path:str,
|
48 |
-
prompt:str,
|
49 |
-
negative_prompt:str,
|
50 |
-
guidance_scale:int,
|
51 |
-
num_inference_step:int,
|
52 |
-
):
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
57 |
-
pretrained_model_name_or_path=-stable_model_path,
|
58 |
-
controlnet=controlnet,
|
59 |
-
safety_checker=None,
|
60 |
-
torch_dtype=torch.float16
|
61 |
)
|
62 |
|
63 |
pipe.to("cuda")
|
@@ -65,11 +67,11 @@ def stable_diffusion_controlnet_pose(
|
|
65 |
pipe.enable_xformers_memory_efficient_attention()
|
66 |
|
67 |
output = pipe(
|
68 |
-
prompt
|
69 |
-
image
|
70 |
-
negative_prompt
|
71 |
-
num_inference_steps
|
72 |
-
guidance_scale
|
73 |
).images
|
74 |
|
75 |
return output[0]
|
@@ -80,57 +82,79 @@ def stable_diffusion_controlnet_pose_app():
|
|
80 |
with gr.Row():
|
81 |
with gr.Column():
|
82 |
controlnet_pose_image_file = gr.Image(
|
83 |
-
type=
|
84 |
-
label='Image'
|
85 |
)
|
86 |
|
87 |
controlnet_pose_stable_model_id = gr.Dropdown(
|
88 |
-
choices=stable_model_list,
|
89 |
-
value=stable_model_list[0],
|
90 |
-
label=
|
91 |
)
|
92 |
-
|
93 |
controlnet_pose_model_id = gr.Dropdown(
|
94 |
choices=stable_model_list,
|
95 |
value=stable_model_list[1],
|
96 |
-
label=
|
97 |
)
|
98 |
-
|
99 |
|
100 |
controlnet_pose_prompt = gr.Textbox(
|
101 |
-
lines=1,
|
102 |
-
value=stable_prompt_list[0],
|
103 |
-
label='Prompt'
|
104 |
)
|
105 |
|
106 |
controlnet_pose_negative_prompt = gr.Textbox(
|
107 |
-
lines=1,
|
108 |
-
value=stable_negative_prompt_list[0],
|
109 |
-
label=
|
110 |
)
|
111 |
|
112 |
with gr.Accordion("Advanced Options", open=False):
|
113 |
controlnet_pose_guidance_scale = gr.Slider(
|
114 |
-
minimum=0.1,
|
115 |
-
maximum=15,
|
116 |
-
step=0.1,
|
117 |
-
value=7.5,
|
118 |
-
label=
|
119 |
)
|
120 |
|
121 |
controlnet_pose_num_inference_step = gr.Slider(
|
122 |
-
minimum=1,
|
123 |
-
maximum=100,
|
124 |
-
step=1,
|
125 |
-
value=50,
|
126 |
-
label=
|
127 |
)
|
128 |
|
129 |
-
controlnet_pose_predict = gr.Button(value=
|
130 |
|
131 |
with gr.Column():
|
132 |
-
output_image = gr.Image(label=
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
controlnet_pose_predict.click(
|
135 |
fn=stable_diffusion_controlnet_pose,
|
136 |
inputs=[
|
@@ -142,5 +166,5 @@ def stable_diffusion_controlnet_pose_app():
|
|
142 |
controlnet_pose_guidance_scale,
|
143 |
controlnet_pose_num_inference_step,
|
144 |
],
|
145 |
-
outputs=output_image
|
146 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from controlnet_aux import OpenposeDetector
|
4 |
+
from diffusers import (
|
5 |
+
ControlNetModel,
|
6 |
+
StableDiffusionControlNetPipeline,
|
7 |
+
UniPCMultistepScheduler,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
|
11 |
stable_model_list = [
|
12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
14 |
]
|
15 |
|
16 |
controlnet_pose_model_list = [
|
17 |
+
"lllyasviel/sd-controlnet-openpose",
|
18 |
+
"thibaud/controlnet-sd21-openpose-diffusers",
|
19 |
]
|
20 |
|
21 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
22 |
|
23 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
|
|
|
24 |
|
25 |
+
data_list = [
|
26 |
+
"data/test.png",
|
27 |
+
]
|
28 |
|
29 |
+
|
30 |
+
def controlnet_pose(image_path: str, controlnet_pose_model_path: str):
|
31 |
+
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
32 |
|
33 |
image = Image.open(image_path)
|
34 |
image = openpose(image)
|
35 |
|
36 |
controlnet = ControlNetModel.from_pretrained(
|
37 |
+
controlnet_pose_model_path, torch_dtype=torch.float16
|
|
|
38 |
)
|
39 |
|
40 |
return controlnet, image
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def stable_diffusion_controlnet_pose(
|
44 |
+
image_path: str,
|
45 |
+
stable_model_path: str,
|
46 |
+
controlnet_pose_model_path: str,
|
47 |
+
prompt: str,
|
48 |
+
negative_prompt: str,
|
49 |
+
guidance_scale: int,
|
50 |
+
num_inference_step: int,
|
51 |
+
):
|
52 |
+
|
53 |
+
controlnet, image = controlnet_pose(
|
54 |
+
image_path=image_path,
|
55 |
+
controlnet_pose_model_path=controlnet_pose_model_path,
|
56 |
+
)
|
57 |
|
58 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
59 |
+
pretrained_model_name_or_path=-stable_model_path,
|
60 |
+
controlnet=controlnet,
|
61 |
+
safety_checker=None,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
)
|
64 |
|
65 |
pipe.to("cuda")
|
|
|
67 |
pipe.enable_xformers_memory_efficient_attention()
|
68 |
|
69 |
output = pipe(
|
70 |
+
prompt=prompt,
|
71 |
+
image=image,
|
72 |
+
negative_prompt=negative_prompt,
|
73 |
+
num_inference_steps=num_inference_step,
|
74 |
+
guidance_scale=guidance_scale,
|
75 |
).images
|
76 |
|
77 |
return output[0]
|
|
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
controlnet_pose_image_file = gr.Image(
|
85 |
+
type="filepath", label="Image"
|
|
|
86 |
)
|
87 |
|
88 |
controlnet_pose_stable_model_id = gr.Dropdown(
|
89 |
+
choices=stable_model_list,
|
90 |
+
value=stable_model_list[0],
|
91 |
+
label="Stable Model Id",
|
92 |
)
|
93 |
+
|
94 |
controlnet_pose_model_id = gr.Dropdown(
|
95 |
choices=stable_model_list,
|
96 |
value=stable_model_list[1],
|
97 |
+
label="ControlNet Model Id",
|
98 |
)
|
|
|
99 |
|
100 |
controlnet_pose_prompt = gr.Textbox(
|
101 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
102 |
)
|
103 |
|
104 |
controlnet_pose_negative_prompt = gr.Textbox(
|
105 |
+
lines=1,
|
106 |
+
value=stable_negative_prompt_list[0],
|
107 |
+
label="Negative Prompt",
|
108 |
)
|
109 |
|
110 |
with gr.Accordion("Advanced Options", open=False):
|
111 |
controlnet_pose_guidance_scale = gr.Slider(
|
112 |
+
minimum=0.1,
|
113 |
+
maximum=15,
|
114 |
+
step=0.1,
|
115 |
+
value=7.5,
|
116 |
+
label="Guidance Scale",
|
117 |
)
|
118 |
|
119 |
controlnet_pose_num_inference_step = gr.Slider(
|
120 |
+
minimum=1,
|
121 |
+
maximum=100,
|
122 |
+
step=1,
|
123 |
+
value=50,
|
124 |
+
label="Num Inference Step",
|
125 |
)
|
126 |
|
127 |
+
controlnet_pose_predict = gr.Button(value="Generator")
|
128 |
|
129 |
with gr.Column():
|
130 |
+
output_image = gr.Image(label="Output")
|
131 |
+
|
132 |
+
gr.Examples(
|
133 |
+
fn=stable_diffusion_controlnet_pose,
|
134 |
+
examples=[
|
135 |
+
[
|
136 |
+
data_list[0],
|
137 |
+
stable_model_list[0],
|
138 |
+
controlnet_pose_model_list[0],
|
139 |
+
stable_prompt_list[0],
|
140 |
+
stable_negative_prompt_list[0],
|
141 |
+
7.5,
|
142 |
+
50,
|
143 |
+
]
|
144 |
+
],
|
145 |
+
inputs=[
|
146 |
+
controlnet_pose_image_file,
|
147 |
+
controlnet_pose_stable_model_id,
|
148 |
+
controlnet_pose_model_id,
|
149 |
+
controlnet_pose_prompt,
|
150 |
+
controlnet_pose_negative_prompt,
|
151 |
+
controlnet_pose_guidance_scale,
|
152 |
+
controlnet_pose_num_inference_step,
|
153 |
+
],
|
154 |
+
outputs=[output_image],
|
155 |
+
label="ControlNet Pose Example",
|
156 |
+
cache_examples=False,
|
157 |
+
)
|
158 |
controlnet_pose_predict.click(
|
159 |
fn=stable_diffusion_controlnet_pose,
|
160 |
inputs=[
|
|
|
166 |
controlnet_pose_guidance_scale,
|
167 |
controlnet_pose_num_inference_step,
|
168 |
],
|
169 |
+
outputs=output_image,
|
170 |
)
|
diffusion_webui/controlnet/controlnet_scribble.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
-
from diffusers import ( StableDiffusionControlNetPipeline,
|
2 |
-
ControlNetModel, UniPCMultistepScheduler)
|
3 |
-
|
4 |
-
from controlnet_aux import HEDdetector
|
5 |
-
|
6 |
-
from PIL import Image
|
7 |
import gradio as gr
|
8 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
stable_model_list = [
|
11 |
"runwayml/stable-diffusion-v1-5",
|
@@ -13,23 +14,21 @@ stable_model_list = [
|
|
13 |
]
|
14 |
|
15 |
controlnet_hed_model_list = [
|
16 |
-
"
|
17 |
-
"thibaud/controlnet-sd21-scribble-diffusers"
|
18 |
]
|
19 |
|
20 |
-
stable_prompt_list = [
|
21 |
-
|
22 |
-
|
23 |
-
]
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
]
|
29 |
|
30 |
|
31 |
-
def controlnet_scribble(image_path:str, controlnet_hed_model_path:str):
|
32 |
-
hed = HEDdetector.from_pretrained(
|
33 |
|
34 |
image = Image.open(image_path)
|
35 |
image = hed(image, scribble=True)
|
@@ -40,23 +39,27 @@ def controlnet_scribble(image_path:str, controlnet_hed_model_path:str):
|
|
40 |
|
41 |
return controlnet, image
|
42 |
|
43 |
-
def stable_diffusion_controlnet_scribble(
|
44 |
-
image_path:str,
|
45 |
-
stable_model_path:str,
|
46 |
-
controlnet_hed_model_path:str,
|
47 |
-
prompt:str,
|
48 |
-
negative_prompt:str,
|
49 |
-
guidance_scale:int,
|
50 |
-
num_inference_step:int,
|
51 |
-
):
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
56 |
-
pretrained_model_name_or_path=stable_model_path,
|
57 |
-
controlnet=controlnet,
|
58 |
-
safety_checker=None,
|
59 |
-
torch_dtype=torch.float16
|
60 |
)
|
61 |
|
62 |
pipe.to("cuda")
|
@@ -64,70 +67,94 @@ def stable_diffusion_controlnet_scribble(
|
|
64 |
pipe.enable_xformers_memory_efficient_attention()
|
65 |
|
66 |
output = pipe(
|
67 |
-
prompt
|
68 |
-
image
|
69 |
-
negative_prompt
|
70 |
-
num_inference_steps
|
71 |
-
guidance_scale
|
72 |
).images
|
73 |
|
74 |
return output[0]
|
75 |
|
|
|
76 |
def stable_diffusion_controlnet_scribble_app():
|
77 |
with gr.Blocks():
|
78 |
with gr.Row():
|
79 |
with gr.Column():
|
80 |
controlnet_scribble_image_file = gr.Image(
|
81 |
-
type=
|
82 |
-
label='Image'
|
83 |
)
|
84 |
|
85 |
controlnet_scribble_stablev1_model_id = gr.Dropdown(
|
86 |
-
choices=stable_model_list,
|
87 |
-
value=stable_model_list[0],
|
88 |
-
label=
|
89 |
)
|
90 |
-
|
91 |
controlnet_scribble_stablev2_model_id = gr.Dropdown(
|
92 |
choices=stable_model_list,
|
93 |
value=stable_model_list[1],
|
94 |
-
label=
|
95 |
)
|
96 |
|
97 |
controlnet_scribble_prompt = gr.Textbox(
|
98 |
-
lines=1,
|
99 |
-
value=stable_prompt_list[0],
|
100 |
-
label='Prompt'
|
101 |
)
|
102 |
|
103 |
controlnet_scribble_negative_prompt = gr.Textbox(
|
104 |
-
lines=1,
|
105 |
-
value=stable_negative_prompt_list[0],
|
106 |
-
label=
|
107 |
)
|
108 |
|
109 |
with gr.Accordion("Advanced Options", open=False):
|
110 |
controlnet_scribble_guidance_scale = gr.Slider(
|
111 |
-
minimum=0.1,
|
112 |
-
maximum=15,
|
113 |
-
step=0.1,
|
114 |
-
value=7.5,
|
115 |
-
label=
|
116 |
)
|
117 |
|
118 |
controlnet_scribble_num_inference_step = gr.Slider(
|
119 |
-
minimum=1,
|
120 |
-
maximum=100,
|
121 |
-
step=1,
|
122 |
-
value=50,
|
123 |
-
label=
|
124 |
)
|
125 |
|
126 |
-
controlnet_scribble_predict = gr.Button(value=
|
127 |
|
128 |
with gr.Column():
|
129 |
-
output_image = gr.Image(label=
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
controlnet_scribble_predict.click(
|
132 |
fn=stable_diffusion_controlnet_scribble,
|
133 |
inputs=[
|
@@ -139,5 +166,5 @@ def stable_diffusion_controlnet_scribble_app():
|
|
139 |
controlnet_scribble_guidance_scale,
|
140 |
controlnet_scribble_num_inference_step,
|
141 |
],
|
142 |
-
outputs=output_image
|
143 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from controlnet_aux import HEDdetector
|
4 |
+
from diffusers import (
|
5 |
+
ControlNetModel,
|
6 |
+
StableDiffusionControlNetPipeline,
|
7 |
+
UniPCMultistepScheduler,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
|
11 |
stable_model_list = [
|
12 |
"runwayml/stable-diffusion-v1-5",
|
|
|
14 |
]
|
15 |
|
16 |
controlnet_hed_model_list = [
|
17 |
+
"lllyasviel/sd-controlnet-scribble",
|
18 |
+
"thibaud/controlnet-sd21-scribble-diffusers",
|
19 |
]
|
20 |
|
21 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
22 |
+
|
23 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
24 |
|
25 |
+
data_list = [
|
26 |
+
"data/test.png",
|
27 |
+
]
|
|
|
28 |
|
29 |
|
30 |
+
def controlnet_scribble(image_path: str, controlnet_hed_model_path: str):
|
31 |
+
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet")
|
32 |
|
33 |
image = Image.open(image_path)
|
34 |
image = hed(image, scribble=True)
|
|
|
39 |
|
40 |
return controlnet, image
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def stable_diffusion_controlnet_scribble(
|
44 |
+
image_path: str,
|
45 |
+
stable_model_path: str,
|
46 |
+
controlnet_hed_model_path: str,
|
47 |
+
prompt: str,
|
48 |
+
negative_prompt: str,
|
49 |
+
guidance_scale: int,
|
50 |
+
num_inference_step: int,
|
51 |
+
):
|
52 |
+
|
53 |
+
controlnet, image = controlnet_scribble(
|
54 |
+
image_path=image_path,
|
55 |
+
controlnet_hed_model_path=controlnet_hed_model_path,
|
56 |
+
)
|
57 |
|
58 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
59 |
+
pretrained_model_name_or_path=stable_model_path,
|
60 |
+
controlnet=controlnet,
|
61 |
+
safety_checker=None,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
)
|
64 |
|
65 |
pipe.to("cuda")
|
|
|
67 |
pipe.enable_xformers_memory_efficient_attention()
|
68 |
|
69 |
output = pipe(
|
70 |
+
prompt=prompt,
|
71 |
+
image=image,
|
72 |
+
negative_prompt=negative_prompt,
|
73 |
+
num_inference_steps=num_inference_step,
|
74 |
+
guidance_scale=guidance_scale,
|
75 |
).images
|
76 |
|
77 |
return output[0]
|
78 |
|
79 |
+
|
80 |
def stable_diffusion_controlnet_scribble_app():
|
81 |
with gr.Blocks():
|
82 |
with gr.Row():
|
83 |
with gr.Column():
|
84 |
controlnet_scribble_image_file = gr.Image(
|
85 |
+
type="filepath", label="Image"
|
|
|
86 |
)
|
87 |
|
88 |
controlnet_scribble_stablev1_model_id = gr.Dropdown(
|
89 |
+
choices=stable_model_list,
|
90 |
+
value=stable_model_list[0],
|
91 |
+
label="Stable v1.5 Model Id",
|
92 |
)
|
93 |
+
|
94 |
controlnet_scribble_stablev2_model_id = gr.Dropdown(
|
95 |
choices=stable_model_list,
|
96 |
value=stable_model_list[1],
|
97 |
+
label="Stable v2.1 Model Id",
|
98 |
)
|
99 |
|
100 |
controlnet_scribble_prompt = gr.Textbox(
|
101 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
102 |
)
|
103 |
|
104 |
controlnet_scribble_negative_prompt = gr.Textbox(
|
105 |
+
lines=1,
|
106 |
+
value=stable_negative_prompt_list[0],
|
107 |
+
label="Negative Prompt",
|
108 |
)
|
109 |
|
110 |
with gr.Accordion("Advanced Options", open=False):
|
111 |
controlnet_scribble_guidance_scale = gr.Slider(
|
112 |
+
minimum=0.1,
|
113 |
+
maximum=15,
|
114 |
+
step=0.1,
|
115 |
+
value=7.5,
|
116 |
+
label="Guidance Scale",
|
117 |
)
|
118 |
|
119 |
controlnet_scribble_num_inference_step = gr.Slider(
|
120 |
+
minimum=1,
|
121 |
+
maximum=100,
|
122 |
+
step=1,
|
123 |
+
value=50,
|
124 |
+
label="Num Inference Step",
|
125 |
)
|
126 |
|
127 |
+
controlnet_scribble_predict = gr.Button(value="Generator")
|
128 |
|
129 |
with gr.Column():
|
130 |
+
output_image = gr.Image(label="Output")
|
131 |
+
|
132 |
+
gr.Examples(
|
133 |
+
fn=stable_diffusion_controlnet_scribble,
|
134 |
+
examples=[
|
135 |
+
[
|
136 |
+
data_list[0],
|
137 |
+
stable_model_list[0],
|
138 |
+
controlnet_hed_model_list[0],
|
139 |
+
stable_prompt_list[0],
|
140 |
+
stable_negative_prompt_list[0],
|
141 |
+
7.5,
|
142 |
+
50,
|
143 |
+
],
|
144 |
+
],
|
145 |
+
inputs=[
|
146 |
+
controlnet_scribble_image_file,
|
147 |
+
controlnet_scribble_stablev1_model_id,
|
148 |
+
controlnet_scribble_stablev2_model_id,
|
149 |
+
controlnet_scribble_prompt,
|
150 |
+
controlnet_scribble_negative_prompt,
|
151 |
+
controlnet_scribble_guidance_scale,
|
152 |
+
controlnet_scribble_num_inference_step,
|
153 |
+
],
|
154 |
+
outputs=[output_image],
|
155 |
+
label="ControlNet Scribble Example",
|
156 |
+
cache_examples=False,
|
157 |
+
)
|
158 |
controlnet_scribble_predict.click(
|
159 |
fn=stable_diffusion_controlnet_scribble,
|
160 |
inputs=[
|
|
|
166 |
controlnet_scribble_guidance_scale,
|
167 |
controlnet_scribble_num_inference_step,
|
168 |
],
|
169 |
+
outputs=output_image,
|
170 |
)
|
diffusion_webui/controlnet/controlnet_seg.py
CHANGED
@@ -1,86 +1,200 @@
|
|
1 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
2 |
-
import torch
|
3 |
-
from diffusers import (StableDiffusionControlNetPipeline,
|
4 |
-
ControlNetModel, UniPCMultistepScheduler)
|
5 |
-
|
6 |
-
|
7 |
-
from PIL import Image
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
stable_model_list = [
|
13 |
"runwayml/stable-diffusion-v1-5",
|
14 |
-
"stabilityai/stable-diffusion-2",
|
15 |
-
"stabilityai/stable-diffusion-2-base",
|
16 |
-
"stabilityai/stable-diffusion-2-1",
|
17 |
-
"stabilityai/stable-diffusion-2-1-base"
|
18 |
]
|
19 |
|
20 |
-
stable_prompt_list = [
|
21 |
-
"a photo of a man.",
|
22 |
-
"a photo of a girl."
|
23 |
-
]
|
24 |
|
25 |
-
stable_negative_prompt_list = [
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
|
31 |
def ade_palette():
|
32 |
"""ADE20K palette that maps each class to RGB values."""
|
33 |
-
return [
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
79 |
|
80 |
with torch.no_grad():
|
81 |
outputs = image_segmentor(pixel_values)
|
82 |
|
83 |
-
seg = image_processor.post_process_semantic_segmentation(
|
|
|
|
|
84 |
|
85 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
86 |
palette = np.array(ade_palette())
|
@@ -91,28 +205,28 @@ def controlnet_mlsd(image_path:str):
|
|
91 |
color_seg = color_seg.astype(np.uint8)
|
92 |
image = Image.fromarray(color_seg)
|
93 |
controlnet = ControlNetModel.from_pretrained(
|
94 |
-
"
|
95 |
)
|
96 |
|
97 |
return controlnet, image
|
98 |
|
99 |
|
100 |
def stable_diffusion_controlnet_seg(
|
101 |
-
image_path:str,
|
102 |
-
model_path:str,
|
103 |
-
prompt:str,
|
104 |
-
negative_prompt:str,
|
105 |
-
guidance_scale:int,
|
106 |
-
num_inference_step:int,
|
107 |
-
|
108 |
|
109 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
110 |
|
111 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
112 |
-
pretrained_model_name_or_path=model_path,
|
113 |
-
controlnet=controlnet,
|
114 |
-
safety_checker=None,
|
115 |
-
torch_dtype=torch.float16
|
116 |
)
|
117 |
|
118 |
pipe.to("cuda")
|
@@ -120,64 +234,87 @@ def stable_diffusion_controlnet_seg(
|
|
120 |
pipe.enable_xformers_memory_efficient_attention()
|
121 |
|
122 |
output = pipe(
|
123 |
-
prompt
|
124 |
-
image
|
125 |
-
negative_prompt
|
126 |
-
num_inference_steps
|
127 |
-
guidance_scale
|
128 |
).images
|
129 |
|
130 |
return output[0]
|
131 |
|
|
|
132 |
def stable_diffusion_controlnet_seg_app():
|
133 |
with gr.Blocks():
|
134 |
with gr.Row():
|
135 |
with gr.Column():
|
136 |
controlnet_seg_image_file = gr.Image(
|
137 |
-
type=
|
138 |
-
label='Image'
|
139 |
)
|
140 |
|
141 |
controlnet_seg_model_id = gr.Dropdown(
|
142 |
-
choices=stable_model_list,
|
143 |
-
value=stable_model_list[0],
|
144 |
-
label=
|
145 |
)
|
146 |
|
147 |
controlnet_seg_prompt = gr.Textbox(
|
148 |
-
lines=1,
|
149 |
-
value=stable_prompt_list[0],
|
150 |
-
label='Prompt'
|
151 |
)
|
152 |
|
153 |
controlnet_seg_negative_prompt = gr.Textbox(
|
154 |
-
lines=1,
|
155 |
-
value=stable_negative_prompt_list[0],
|
156 |
-
label=
|
157 |
)
|
158 |
|
159 |
with gr.Accordion("Advanced Options", open=False):
|
160 |
controlnet_seg_guidance_scale = gr.Slider(
|
161 |
-
minimum=0.1,
|
162 |
-
maximum=15,
|
163 |
-
step=0.1,
|
164 |
-
value=7.5,
|
165 |
-
label=
|
166 |
)
|
167 |
|
168 |
controlnet_seg_num_inference_step = gr.Slider(
|
169 |
-
minimum=1,
|
170 |
-
maximum=100,
|
171 |
-
step=1,
|
172 |
-
value=50,
|
173 |
-
label=
|
174 |
)
|
175 |
|
176 |
-
controlnet_seg_predict = gr.Button(value=
|
177 |
|
178 |
with gr.Column():
|
179 |
-
output_image = gr.Image(label=
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
controlnet_seg_predict.click(
|
182 |
fn=stable_diffusion_controlnet_seg,
|
183 |
inputs=[
|
@@ -190,4 +327,3 @@ def stable_diffusion_controlnet_seg_app():
|
|
190 |
],
|
191 |
outputs=[output_image],
|
192 |
)
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from diffusers import (
|
5 |
+
ControlNetModel,
|
6 |
+
StableDiffusionControlNetPipeline,
|
7 |
+
UniPCMultistepScheduler,
|
8 |
+
)
|
9 |
+
from PIL import Image
|
10 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
11 |
|
12 |
stable_model_list = [
|
13 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
|
|
|
|
|
14 |
]
|
15 |
|
16 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
17 |
|
18 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
19 |
+
|
20 |
+
data_list = [
|
21 |
+
"data/test.png",
|
22 |
+
]
|
23 |
|
24 |
|
25 |
def ade_palette():
|
26 |
"""ADE20K palette that maps each class to RGB values."""
|
27 |
+
return [
|
28 |
+
[120, 120, 120],
|
29 |
+
[180, 120, 120],
|
30 |
+
[6, 230, 230],
|
31 |
+
[80, 50, 50],
|
32 |
+
[4, 200, 3],
|
33 |
+
[120, 120, 80],
|
34 |
+
[140, 140, 140],
|
35 |
+
[204, 5, 255],
|
36 |
+
[230, 230, 230],
|
37 |
+
[4, 250, 7],
|
38 |
+
[224, 5, 255],
|
39 |
+
[235, 255, 7],
|
40 |
+
[150, 5, 61],
|
41 |
+
[120, 120, 70],
|
42 |
+
[8, 255, 51],
|
43 |
+
[255, 6, 82],
|
44 |
+
[143, 255, 140],
|
45 |
+
[204, 255, 4],
|
46 |
+
[255, 51, 7],
|
47 |
+
[204, 70, 3],
|
48 |
+
[0, 102, 200],
|
49 |
+
[61, 230, 250],
|
50 |
+
[255, 6, 51],
|
51 |
+
[11, 102, 255],
|
52 |
+
[255, 7, 71],
|
53 |
+
[255, 9, 224],
|
54 |
+
[9, 7, 230],
|
55 |
+
[220, 220, 220],
|
56 |
+
[255, 9, 92],
|
57 |
+
[112, 9, 255],
|
58 |
+
[8, 255, 214],
|
59 |
+
[7, 255, 224],
|
60 |
+
[255, 184, 6],
|
61 |
+
[10, 255, 71],
|
62 |
+
[255, 41, 10],
|
63 |
+
[7, 255, 255],
|
64 |
+
[224, 255, 8],
|
65 |
+
[102, 8, 255],
|
66 |
+
[255, 61, 6],
|
67 |
+
[255, 194, 7],
|
68 |
+
[255, 122, 8],
|
69 |
+
[0, 255, 20],
|
70 |
+
[255, 8, 41],
|
71 |
+
[255, 5, 153],
|
72 |
+
[6, 51, 255],
|
73 |
+
[235, 12, 255],
|
74 |
+
[160, 150, 20],
|
75 |
+
[0, 163, 255],
|
76 |
+
[140, 140, 140],
|
77 |
+
[250, 10, 15],
|
78 |
+
[20, 255, 0],
|
79 |
+
[31, 255, 0],
|
80 |
+
[255, 31, 0],
|
81 |
+
[255, 224, 0],
|
82 |
+
[153, 255, 0],
|
83 |
+
[0, 0, 255],
|
84 |
+
[255, 71, 0],
|
85 |
+
[0, 235, 255],
|
86 |
+
[0, 173, 255],
|
87 |
+
[31, 0, 255],
|
88 |
+
[11, 200, 200],
|
89 |
+
[255, 82, 0],
|
90 |
+
[0, 255, 245],
|
91 |
+
[0, 61, 255],
|
92 |
+
[0, 255, 112],
|
93 |
+
[0, 255, 133],
|
94 |
+
[255, 0, 0],
|
95 |
+
[255, 163, 0],
|
96 |
+
[255, 102, 0],
|
97 |
+
[194, 255, 0],
|
98 |
+
[0, 143, 255],
|
99 |
+
[51, 255, 0],
|
100 |
+
[0, 82, 255],
|
101 |
+
[0, 255, 41],
|
102 |
+
[0, 255, 173],
|
103 |
+
[10, 0, 255],
|
104 |
+
[173, 255, 0],
|
105 |
+
[0, 255, 153],
|
106 |
+
[255, 92, 0],
|
107 |
+
[255, 0, 255],
|
108 |
+
[255, 0, 245],
|
109 |
+
[255, 0, 102],
|
110 |
+
[255, 173, 0],
|
111 |
+
[255, 0, 20],
|
112 |
+
[255, 184, 184],
|
113 |
+
[0, 31, 255],
|
114 |
+
[0, 255, 61],
|
115 |
+
[0, 71, 255],
|
116 |
+
[255, 0, 204],
|
117 |
+
[0, 255, 194],
|
118 |
+
[0, 255, 82],
|
119 |
+
[0, 10, 255],
|
120 |
+
[0, 112, 255],
|
121 |
+
[51, 0, 255],
|
122 |
+
[0, 194, 255],
|
123 |
+
[0, 122, 255],
|
124 |
+
[0, 255, 163],
|
125 |
+
[255, 153, 0],
|
126 |
+
[0, 255, 10],
|
127 |
+
[255, 112, 0],
|
128 |
+
[143, 255, 0],
|
129 |
+
[82, 0, 255],
|
130 |
+
[163, 255, 0],
|
131 |
+
[255, 235, 0],
|
132 |
+
[8, 184, 170],
|
133 |
+
[133, 0, 255],
|
134 |
+
[0, 255, 92],
|
135 |
+
[184, 0, 255],
|
136 |
+
[255, 0, 31],
|
137 |
+
[0, 184, 255],
|
138 |
+
[0, 214, 255],
|
139 |
+
[255, 0, 112],
|
140 |
+
[92, 255, 0],
|
141 |
+
[0, 224, 255],
|
142 |
+
[112, 224, 255],
|
143 |
+
[70, 184, 160],
|
144 |
+
[163, 0, 255],
|
145 |
+
[153, 0, 255],
|
146 |
+
[71, 255, 0],
|
147 |
+
[255, 0, 163],
|
148 |
+
[255, 204, 0],
|
149 |
+
[255, 0, 143],
|
150 |
+
[0, 255, 235],
|
151 |
+
[133, 255, 0],
|
152 |
+
[255, 0, 235],
|
153 |
+
[245, 0, 255],
|
154 |
+
[255, 0, 122],
|
155 |
+
[255, 245, 0],
|
156 |
+
[10, 190, 212],
|
157 |
+
[214, 255, 0],
|
158 |
+
[0, 204, 255],
|
159 |
+
[20, 0, 255],
|
160 |
+
[255, 255, 0],
|
161 |
+
[0, 153, 255],
|
162 |
+
[0, 41, 255],
|
163 |
+
[0, 255, 204],
|
164 |
+
[41, 0, 255],
|
165 |
+
[41, 255, 0],
|
166 |
+
[173, 0, 255],
|
167 |
+
[0, 245, 255],
|
168 |
+
[71, 0, 255],
|
169 |
+
[122, 0, 255],
|
170 |
+
[0, 255, 184],
|
171 |
+
[0, 92, 255],
|
172 |
+
[184, 255, 0],
|
173 |
+
[0, 133, 255],
|
174 |
+
[255, 214, 0],
|
175 |
+
[25, 194, 194],
|
176 |
+
[102, 255, 0],
|
177 |
+
[92, 0, 255],
|
178 |
+
]
|
179 |
+
|
180 |
+
|
181 |
+
def controlnet_mlsd(image_path: str):
|
182 |
+
image_processor = AutoImageProcessor.from_pretrained(
|
183 |
+
"openmmlab/upernet-convnext-small"
|
184 |
+
)
|
185 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
|
186 |
+
"openmmlab/upernet-convnext-small"
|
187 |
+
)
|
188 |
+
|
189 |
+
image = Image.open(image_path).convert("RGB")
|
190 |
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
191 |
|
192 |
with torch.no_grad():
|
193 |
outputs = image_segmentor(pixel_values)
|
194 |
|
195 |
+
seg = image_processor.post_process_semantic_segmentation(
|
196 |
+
outputs, target_sizes=[image.size[::-1]]
|
197 |
+
)[0]
|
198 |
|
199 |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
|
200 |
palette = np.array(ade_palette())
|
|
|
205 |
color_seg = color_seg.astype(np.uint8)
|
206 |
image = Image.fromarray(color_seg)
|
207 |
controlnet = ControlNetModel.from_pretrained(
|
208 |
+
"lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16
|
209 |
)
|
210 |
|
211 |
return controlnet, image
|
212 |
|
213 |
|
214 |
def stable_diffusion_controlnet_seg(
|
215 |
+
image_path: str,
|
216 |
+
model_path: str,
|
217 |
+
prompt: str,
|
218 |
+
negative_prompt: str,
|
219 |
+
guidance_scale: int,
|
220 |
+
num_inference_step: int,
|
221 |
+
):
|
222 |
|
223 |
controlnet, image = controlnet_mlsd(image_path=image_path)
|
224 |
|
225 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
226 |
+
pretrained_model_name_or_path=model_path,
|
227 |
+
controlnet=controlnet,
|
228 |
+
safety_checker=None,
|
229 |
+
torch_dtype=torch.float16,
|
230 |
)
|
231 |
|
232 |
pipe.to("cuda")
|
|
|
234 |
pipe.enable_xformers_memory_efficient_attention()
|
235 |
|
236 |
output = pipe(
|
237 |
+
prompt=prompt,
|
238 |
+
image=image,
|
239 |
+
negative_prompt=negative_prompt,
|
240 |
+
num_inference_steps=num_inference_step,
|
241 |
+
guidance_scale=guidance_scale,
|
242 |
).images
|
243 |
|
244 |
return output[0]
|
245 |
|
246 |
+
|
247 |
def stable_diffusion_controlnet_seg_app():
|
248 |
with gr.Blocks():
|
249 |
with gr.Row():
|
250 |
with gr.Column():
|
251 |
controlnet_seg_image_file = gr.Image(
|
252 |
+
type="filepath", label="Image"
|
|
|
253 |
)
|
254 |
|
255 |
controlnet_seg_model_id = gr.Dropdown(
|
256 |
+
choices=stable_model_list,
|
257 |
+
value=stable_model_list[0],
|
258 |
+
label="Stable Model Id",
|
259 |
)
|
260 |
|
261 |
controlnet_seg_prompt = gr.Textbox(
|
262 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
263 |
)
|
264 |
|
265 |
controlnet_seg_negative_prompt = gr.Textbox(
|
266 |
+
lines=1,
|
267 |
+
value=stable_negative_prompt_list[0],
|
268 |
+
label="Negative Prompt",
|
269 |
)
|
270 |
|
271 |
with gr.Accordion("Advanced Options", open=False):
|
272 |
controlnet_seg_guidance_scale = gr.Slider(
|
273 |
+
minimum=0.1,
|
274 |
+
maximum=15,
|
275 |
+
step=0.1,
|
276 |
+
value=7.5,
|
277 |
+
label="Guidance Scale",
|
278 |
)
|
279 |
|
280 |
controlnet_seg_num_inference_step = gr.Slider(
|
281 |
+
minimum=1,
|
282 |
+
maximum=100,
|
283 |
+
step=1,
|
284 |
+
value=50,
|
285 |
+
label="Num Inference Step",
|
286 |
)
|
287 |
|
288 |
+
controlnet_seg_predict = gr.Button(value="Generator")
|
289 |
|
290 |
with gr.Column():
|
291 |
+
output_image = gr.Image(label="Output")
|
292 |
+
|
293 |
+
gr.Examples(
|
294 |
+
fn=stable_diffusion_controlnet_seg,
|
295 |
+
examples=[
|
296 |
+
[
|
297 |
+
data_list[0],
|
298 |
+
stable_model_list[0],
|
299 |
+
stable_prompt_list[0],
|
300 |
+
stable_negative_prompt_list[0],
|
301 |
+
7.5,
|
302 |
+
50,
|
303 |
+
],
|
304 |
+
],
|
305 |
+
inputs=[
|
306 |
+
controlnet_seg_image_file,
|
307 |
+
controlnet_seg_model_id,
|
308 |
+
controlnet_seg_prompt,
|
309 |
+
controlnet_seg_negative_prompt,
|
310 |
+
controlnet_seg_guidance_scale,
|
311 |
+
controlnet_seg_num_inference_step,
|
312 |
+
],
|
313 |
+
outputs=[output_image],
|
314 |
+
cache_examples=False,
|
315 |
+
label="ControlNet Segmentation Example",
|
316 |
+
)
|
317 |
+
|
318 |
controlnet_seg_predict.click(
|
319 |
fn=stable_diffusion_controlnet_seg,
|
320 |
inputs=[
|
|
|
327 |
],
|
328 |
outputs=[output_image],
|
329 |
)
|
|
diffusion_webui/helpers.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusion_webui.controlnet.controlnet_canny import (
|
2 |
+
stable_diffusion_controlnet_canny_app,
|
3 |
+
)
|
4 |
+
from diffusion_webui.controlnet.controlnet_depth import (
|
5 |
+
stable_diffusion_controlnet_depth_app,
|
6 |
+
)
|
7 |
+
from diffusion_webui.controlnet.controlnet_hed import (
|
8 |
+
stable_diffusion_controlnet_hed_app,
|
9 |
+
)
|
10 |
+
from diffusion_webui.controlnet.controlnet_mlsd import (
|
11 |
+
stable_diffusion_controlnet_mlsd_app,
|
12 |
+
)
|
13 |
+
from diffusion_webui.controlnet.controlnet_pose import (
|
14 |
+
stable_diffusion_controlnet_pose_app,
|
15 |
+
)
|
16 |
+
from diffusion_webui.controlnet.controlnet_scribble import (
|
17 |
+
stable_diffusion_controlnet_scribble_app,
|
18 |
+
)
|
19 |
+
from diffusion_webui.controlnet.controlnet_seg import (
|
20 |
+
stable_diffusion_controlnet_seg_app,
|
21 |
+
)
|
22 |
+
from diffusion_webui.stable_diffusion.img2img_app import (
|
23 |
+
stable_diffusion_img2img_app,
|
24 |
+
)
|
25 |
+
from diffusion_webui.stable_diffusion.inpaint_app import (
|
26 |
+
stable_diffusion_inpaint_app,
|
27 |
+
)
|
28 |
+
from diffusion_webui.stable_diffusion.keras_txt2img import (
|
29 |
+
keras_stable_diffusion_app,
|
30 |
+
)
|
31 |
+
from diffusion_webui.stable_diffusion.text2img_app import (
|
32 |
+
stable_diffusion_text2img_app,
|
33 |
+
)
|
diffusion_webui/stable_diffusion/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (191 Bytes). View file
|
|
diffusion_webui/stable_diffusion/__pycache__/img2img_app.cpython-38.pyc
ADDED
Binary file (2.55 kB). View file
|
|
diffusion_webui/stable_diffusion/__pycache__/inpaint_app.cpython-38.pyc
ADDED
Binary file (2.42 kB). View file
|
|
diffusion_webui/stable_diffusion/__pycache__/keras_txt2img.cpython-38.pyc
ADDED
Binary file (2.79 kB). View file
|
|
diffusion_webui/stable_diffusion/__pycache__/text2img_app.cpython-38.pyc
ADDED
Binary file (2.74 kB). View file
|
|
diffusion_webui/stable_diffusion/img2img_app.py
CHANGED
@@ -1,54 +1,46 @@
|
|
1 |
-
from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler
|
2 |
-
|
3 |
-
from PIL import Image
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
stable_model_list = [
|
8 |
"runwayml/stable-diffusion-v1-5",
|
9 |
-
"stabilityai/stable-diffusion-2",
|
10 |
-
"stabilityai/stable-diffusion-2-base",
|
11 |
"stabilityai/stable-diffusion-2-1",
|
12 |
-
"stabilityai/stable-diffusion-2-1-base"
|
13 |
]
|
14 |
|
15 |
-
stable_prompt_list = [
|
16 |
-
"a photo of a man.",
|
17 |
-
"a photo of a girl."
|
18 |
-
]
|
19 |
|
20 |
-
stable_negative_prompt_list = [
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
|
26 |
def stable_diffusion_img2img(
|
27 |
-
image_path:str,
|
28 |
-
model_path:str,
|
29 |
-
prompt:str,
|
30 |
-
negative_prompt:str,
|
31 |
-
guidance_scale:int,
|
32 |
-
num_inference_step:int,
|
33 |
-
|
34 |
|
35 |
image = Image.open(image_path)
|
36 |
|
37 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
38 |
-
model_path,
|
39 |
-
safety_checker=None,
|
40 |
-
torch_dtype=torch.float16
|
41 |
)
|
42 |
pipe.to("cuda")
|
43 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
44 |
pipe.enable_xformers_memory_efficient_attention()
|
45 |
|
46 |
output = pipe(
|
47 |
-
prompt
|
48 |
-
image
|
49 |
-
negative_prompt
|
50 |
-
num_inference_steps
|
51 |
-
guidance_scale
|
52 |
).images
|
53 |
|
54 |
return output[0]
|
@@ -59,50 +51,72 @@ def stable_diffusion_img2img_app():
|
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
61 |
image2image2_image_file = gr.Image(
|
62 |
-
type=
|
63 |
-
label='Image'
|
64 |
)
|
65 |
|
66 |
image2image_model_path = gr.Dropdown(
|
67 |
-
choices=stable_model_list,
|
68 |
-
value=stable_model_list[0],
|
69 |
-
label=
|
70 |
)
|
71 |
|
72 |
image2image_prompt = gr.Textbox(
|
73 |
-
lines=1,
|
74 |
-
value=stable_prompt_list[0],
|
75 |
-
label='Prompt'
|
76 |
)
|
77 |
|
78 |
image2image_negative_prompt = gr.Textbox(
|
79 |
-
lines=1,
|
80 |
-
value=stable_negative_prompt_list[0],
|
81 |
-
label=
|
82 |
)
|
83 |
|
84 |
with gr.Accordion("Advanced Options", open=False):
|
85 |
image2image_guidance_scale = gr.Slider(
|
86 |
-
minimum=0.1,
|
87 |
-
maximum=15,
|
88 |
-
step=0.1,
|
89 |
-
value=7.5,
|
90 |
-
label=
|
91 |
)
|
92 |
|
93 |
image2image_num_inference_step = gr.Slider(
|
94 |
-
minimum=1,
|
95 |
-
maximum=100,
|
96 |
-
step=1,
|
97 |
-
value=50,
|
98 |
-
label=
|
99 |
)
|
100 |
|
101 |
-
image2image_predict = gr.Button(value=
|
102 |
|
103 |
with gr.Column():
|
104 |
-
output_image = gr.Image(label=
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
image2image_predict.click(
|
107 |
fn=stable_diffusion_img2img,
|
108 |
inputs=[
|
@@ -112,6 +126,6 @@ def stable_diffusion_img2img_app():
|
|
112 |
image2image_negative_prompt,
|
113 |
image2image_guidance_scale,
|
114 |
image2image_num_inference_step,
|
115 |
-
],
|
116 |
outputs=[output_image],
|
117 |
)
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import DDIMScheduler, StableDiffusionImg2ImgPipeline
|
4 |
+
from PIL import Image
|
5 |
|
6 |
stable_model_list = [
|
7 |
"runwayml/stable-diffusion-v1-5",
|
|
|
|
|
8 |
"stabilityai/stable-diffusion-2-1",
|
|
|
9 |
]
|
10 |
|
11 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
12 |
|
13 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
14 |
+
|
15 |
+
data_list = [
|
16 |
+
"data/test.png",
|
17 |
+
]
|
18 |
|
19 |
|
20 |
def stable_diffusion_img2img(
|
21 |
+
image_path: str,
|
22 |
+
model_path: str,
|
23 |
+
prompt: str,
|
24 |
+
negative_prompt: str,
|
25 |
+
guidance_scale: int,
|
26 |
+
num_inference_step: int,
|
27 |
+
):
|
28 |
|
29 |
image = Image.open(image_path)
|
30 |
|
31 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
|
32 |
+
model_path, safety_checker=None, torch_dtype=torch.float16
|
|
|
|
|
33 |
)
|
34 |
pipe.to("cuda")
|
35 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
36 |
pipe.enable_xformers_memory_efficient_attention()
|
37 |
|
38 |
output = pipe(
|
39 |
+
prompt=prompt,
|
40 |
+
image=image,
|
41 |
+
negative_prompt=negative_prompt,
|
42 |
+
num_inference_steps=num_inference_step,
|
43 |
+
guidance_scale=guidance_scale,
|
44 |
).images
|
45 |
|
46 |
return output[0]
|
|
|
51 |
with gr.Row():
|
52 |
with gr.Column():
|
53 |
image2image2_image_file = gr.Image(
|
54 |
+
type="filepath", label="Image"
|
|
|
55 |
)
|
56 |
|
57 |
image2image_model_path = gr.Dropdown(
|
58 |
+
choices=stable_model_list,
|
59 |
+
value=stable_model_list[0],
|
60 |
+
label="Image-Image Model Id",
|
61 |
)
|
62 |
|
63 |
image2image_prompt = gr.Textbox(
|
64 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
65 |
)
|
66 |
|
67 |
image2image_negative_prompt = gr.Textbox(
|
68 |
+
lines=1,
|
69 |
+
value=stable_negative_prompt_list[0],
|
70 |
+
label="Negative Prompt",
|
71 |
)
|
72 |
|
73 |
with gr.Accordion("Advanced Options", open=False):
|
74 |
image2image_guidance_scale = gr.Slider(
|
75 |
+
minimum=0.1,
|
76 |
+
maximum=15,
|
77 |
+
step=0.1,
|
78 |
+
value=7.5,
|
79 |
+
label="Guidance Scale",
|
80 |
)
|
81 |
|
82 |
image2image_num_inference_step = gr.Slider(
|
83 |
+
minimum=1,
|
84 |
+
maximum=100,
|
85 |
+
step=1,
|
86 |
+
value=50,
|
87 |
+
label="Num Inference Step",
|
88 |
)
|
89 |
|
90 |
+
image2image_predict = gr.Button(value="Generator")
|
91 |
|
92 |
with gr.Column():
|
93 |
+
output_image = gr.Image(label="Output")
|
94 |
+
|
95 |
+
gr.Examples(
|
96 |
+
fn=stable_diffusion_img2img,
|
97 |
+
examples=[
|
98 |
+
[
|
99 |
+
data_list[0],
|
100 |
+
stable_model_list[0],
|
101 |
+
stable_prompt_list[0],
|
102 |
+
stable_negative_prompt_list[0],
|
103 |
+
7.5,
|
104 |
+
50,
|
105 |
+
],
|
106 |
+
],
|
107 |
+
inputs=[
|
108 |
+
image2image2_image_file,
|
109 |
+
image2image_model_path,
|
110 |
+
image2image_prompt,
|
111 |
+
image2image_negative_prompt,
|
112 |
+
image2image_guidance_scale,
|
113 |
+
image2image_num_inference_step,
|
114 |
+
],
|
115 |
+
outputs=[output_image],
|
116 |
+
cache_examples=False,
|
117 |
+
label="Image-Image Generator",
|
118 |
+
)
|
119 |
+
|
120 |
image2image_predict.click(
|
121 |
fn=stable_diffusion_img2img,
|
122 |
inputs=[
|
|
|
126 |
image2image_negative_prompt,
|
127 |
image2image_guidance_scale,
|
128 |
image2image_num_inference_step,
|
129 |
+
],
|
130 |
outputs=[output_image],
|
131 |
)
|
diffusion_webui/stable_diffusion/inpaint_app.py
CHANGED
@@ -1,32 +1,25 @@
|
|
1 |
-
from diffusers import DiffusionPipeline, DDIMScheduler
|
2 |
-
import torch
|
3 |
-
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
stable_inpiant_model_list = [
|
7 |
"stabilityai/stable-diffusion-2-inpainting",
|
8 |
-
"runwayml/stable-diffusion-inpainting"
|
9 |
]
|
10 |
|
11 |
-
stable_prompt_list = [
|
12 |
-
"a photo of a man.",
|
13 |
-
"a photo of a girl."
|
14 |
-
]
|
15 |
|
16 |
-
stable_negative_prompt_list = [
|
17 |
-
"bad, ugly",
|
18 |
-
"deformed"
|
19 |
-
]
|
20 |
|
21 |
|
22 |
def stable_diffusion_inpaint(
|
23 |
-
dict:str,
|
24 |
-
model_path:str,
|
25 |
-
prompt:str,
|
26 |
-
negative_prompt:str,
|
27 |
-
guidance_scale:int,
|
28 |
-
num_inference_step:int,
|
29 |
-
|
30 |
|
31 |
image = dict["image"].convert("RGB").resize((512, 512))
|
32 |
mask_image = dict["mask"].convert("RGB").resize((512, 512))
|
@@ -35,17 +28,17 @@ def stable_diffusion_inpaint(
|
|
35 |
revision="fp16",
|
36 |
torch_dtype=torch.float16,
|
37 |
)
|
38 |
-
pipe.to(
|
39 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
40 |
pipe.enable_xformers_memory_efficient_attention()
|
41 |
|
42 |
output = pipe(
|
43 |
-
prompt
|
44 |
-
image
|
45 |
mask_image=mask_image,
|
46 |
-
negative_prompt
|
47 |
-
num_inference_steps
|
48 |
-
guidance_scale
|
49 |
).images
|
50 |
|
51 |
return output[0]
|
@@ -56,54 +49,51 @@ def stable_diffusion_inpaint_app():
|
|
56 |
with gr.Row():
|
57 |
with gr.Column():
|
58 |
inpaint_image_file = gr.Image(
|
59 |
-
source=
|
60 |
-
tool=
|
61 |
-
elem_id="image_upload",
|
62 |
-
type="pil",
|
63 |
-
label="Upload"
|
64 |
)
|
65 |
|
66 |
inpaint_model_id = gr.Dropdown(
|
67 |
-
choices=stable_inpiant_model_list,
|
68 |
-
value=stable_inpiant_model_list[0],
|
69 |
-
label=
|
70 |
)
|
71 |
|
72 |
inpaint_prompt = gr.Textbox(
|
73 |
-
lines=1,
|
74 |
-
value=stable_prompt_list[0],
|
75 |
-
label='Prompt'
|
76 |
)
|
77 |
|
78 |
inpaint_negative_prompt = gr.Textbox(
|
79 |
-
lines=1,
|
80 |
-
value=stable_negative_prompt_list[0],
|
81 |
-
label=
|
82 |
)
|
83 |
|
84 |
with gr.Accordion("Advanced Options", open=False):
|
85 |
inpaint_guidance_scale = gr.Slider(
|
86 |
-
minimum=0.1,
|
87 |
-
maximum=15,
|
88 |
-
step=0.1,
|
89 |
-
value=7.5,
|
90 |
-
label=
|
91 |
)
|
92 |
|
93 |
inpaint_num_inference_step = gr.Slider(
|
94 |
-
minimum=1,
|
95 |
-
maximum=100,
|
96 |
-
step=1,
|
97 |
-
value=50,
|
98 |
-
label=
|
99 |
)
|
100 |
|
101 |
-
inpaint_predict = gr.Button(value=
|
102 |
|
103 |
-
|
104 |
with gr.Column():
|
105 |
output_image = gr.Gallery(label="Outputs")
|
106 |
-
|
107 |
inpaint_predict.click(
|
108 |
fn=stable_diffusion_inpaint,
|
109 |
inputs=[
|
@@ -114,6 +104,5 @@ def stable_diffusion_inpaint_app():
|
|
114 |
inpaint_guidance_scale,
|
115 |
inpaint_num_inference_step,
|
116 |
],
|
117 |
-
outputs=output_image
|
118 |
)
|
119 |
-
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DDIMScheduler, DiffusionPipeline
|
4 |
|
5 |
stable_inpiant_model_list = [
|
6 |
"stabilityai/stable-diffusion-2-inpainting",
|
7 |
+
"runwayml/stable-diffusion-inpainting",
|
8 |
]
|
9 |
|
10 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
|
|
|
|
|
|
11 |
|
12 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def stable_diffusion_inpaint(
|
16 |
+
dict: str,
|
17 |
+
model_path: str,
|
18 |
+
prompt: str,
|
19 |
+
negative_prompt: str,
|
20 |
+
guidance_scale: int,
|
21 |
+
num_inference_step: int,
|
22 |
+
):
|
23 |
|
24 |
image = dict["image"].convert("RGB").resize((512, 512))
|
25 |
mask_image = dict["mask"].convert("RGB").resize((512, 512))
|
|
|
28 |
revision="fp16",
|
29 |
torch_dtype=torch.float16,
|
30 |
)
|
31 |
+
pipe.to("cuda")
|
32 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
33 |
pipe.enable_xformers_memory_efficient_attention()
|
34 |
|
35 |
output = pipe(
|
36 |
+
prompt=prompt,
|
37 |
+
image=image,
|
38 |
mask_image=mask_image,
|
39 |
+
negative_prompt=negative_prompt,
|
40 |
+
num_inference_steps=num_inference_step,
|
41 |
+
guidance_scale=guidance_scale,
|
42 |
).images
|
43 |
|
44 |
return output[0]
|
|
|
49 |
with gr.Row():
|
50 |
with gr.Column():
|
51 |
inpaint_image_file = gr.Image(
|
52 |
+
source="upload",
|
53 |
+
tool="sketch",
|
54 |
+
elem_id="image_upload",
|
55 |
+
type="pil",
|
56 |
+
label="Upload",
|
57 |
)
|
58 |
|
59 |
inpaint_model_id = gr.Dropdown(
|
60 |
+
choices=stable_inpiant_model_list,
|
61 |
+
value=stable_inpiant_model_list[0],
|
62 |
+
label="Inpaint Model Id",
|
63 |
)
|
64 |
|
65 |
inpaint_prompt = gr.Textbox(
|
66 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
67 |
)
|
68 |
|
69 |
inpaint_negative_prompt = gr.Textbox(
|
70 |
+
lines=1,
|
71 |
+
value=stable_negative_prompt_list[0],
|
72 |
+
label="Negative Prompt",
|
73 |
)
|
74 |
|
75 |
with gr.Accordion("Advanced Options", open=False):
|
76 |
inpaint_guidance_scale = gr.Slider(
|
77 |
+
minimum=0.1,
|
78 |
+
maximum=15,
|
79 |
+
step=0.1,
|
80 |
+
value=7.5,
|
81 |
+
label="Guidance Scale",
|
82 |
)
|
83 |
|
84 |
inpaint_num_inference_step = gr.Slider(
|
85 |
+
minimum=1,
|
86 |
+
maximum=100,
|
87 |
+
step=1,
|
88 |
+
value=50,
|
89 |
+
label="Num Inference Step",
|
90 |
)
|
91 |
|
92 |
+
inpaint_predict = gr.Button(value="Generator")
|
93 |
|
|
|
94 |
with gr.Column():
|
95 |
output_image = gr.Gallery(label="Outputs")
|
96 |
+
|
97 |
inpaint_predict.click(
|
98 |
fn=stable_diffusion_inpaint,
|
99 |
inputs=[
|
|
|
104 |
inpaint_guidance_scale,
|
105 |
inpaint_num_inference_step,
|
106 |
],
|
107 |
+
outputs=output_image,
|
108 |
)
|
|
diffusion_webui/stable_diffusion/keras_txt2img.py
CHANGED
@@ -1,8 +1,8 @@
|
|
|
|
|
|
1 |
from huggingface_hub import from_pretrained_keras
|
2 |
from keras_cv import models
|
3 |
from tensorflow import keras
|
4 |
-
import tensorflow as tf
|
5 |
-
import gradio as gr
|
6 |
|
7 |
keras_model_list = [
|
8 |
"keras-dreambooth/keras_diffusion_lowpoly_world",
|
@@ -11,105 +11,128 @@ keras_model_list = [
|
|
11 |
]
|
12 |
|
13 |
stable_prompt_list = [
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
stable_negative_prompt_list = [
|
19 |
-
"bad, ugly",
|
20 |
-
"deformed"
|
21 |
-
]
|
22 |
|
23 |
def keras_stable_diffusion(
|
24 |
-
model_path:str,
|
25 |
-
prompt:str,
|
26 |
-
negative_prompt:str,
|
27 |
-
guidance_scale:int,
|
28 |
-
num_inference_step:int,
|
29 |
-
height:int,
|
30 |
-
width:int,
|
31 |
-
|
32 |
-
|
33 |
-
with tf.device(
|
34 |
keras.mixed_precision.set_global_policy("mixed_float16")
|
35 |
-
|
36 |
sd_dreambooth_model = models.StableDiffusion(
|
37 |
-
img_width=height,
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
db_diffusion_model = from_pretrained_keras(model_path)
|
42 |
sd_dreambooth_model._diffusion_model = db_diffusion_model
|
43 |
-
|
44 |
generated_images = sd_dreambooth_model.text_to_image(
|
45 |
prompt=prompt,
|
46 |
negative_prompt=negative_prompt,
|
47 |
num_steps=num_inference_step,
|
48 |
-
unconditional_guidance_scale=guidance_scale
|
49 |
)
|
50 |
|
51 |
return generated_images
|
52 |
|
|
|
53 |
def keras_stable_diffusion_app():
|
54 |
with gr.Blocks():
|
55 |
with gr.Row():
|
56 |
with gr.Column():
|
57 |
keras_text2image_model_path = gr.Dropdown(
|
58 |
-
choices=keras_model_list,
|
59 |
-
value=keras_model_list[0],
|
60 |
-
label=
|
61 |
)
|
62 |
|
63 |
keras_text2image_prompt = gr.Textbox(
|
64 |
-
lines=1,
|
65 |
-
value=stable_prompt_list[0],
|
66 |
-
label='Prompt'
|
67 |
)
|
68 |
|
69 |
keras_text2image_negative_prompt = gr.Textbox(
|
70 |
-
lines=1,
|
71 |
-
value=stable_negative_prompt_list[0],
|
72 |
-
label=
|
73 |
)
|
74 |
|
75 |
with gr.Accordion("Advanced Options", open=False):
|
76 |
keras_text2image_guidance_scale = gr.Slider(
|
77 |
-
minimum=0.1,
|
78 |
-
maximum=15,
|
79 |
-
step=0.1,
|
80 |
-
value=7.5,
|
81 |
-
label=
|
82 |
)
|
83 |
|
84 |
keras_text2image_num_inference_step = gr.Slider(
|
85 |
-
minimum=1,
|
86 |
-
maximum=100,
|
87 |
-
step=1,
|
88 |
-
value=50,
|
89 |
-
label=
|
90 |
)
|
91 |
|
92 |
keras_text2image_height = gr.Slider(
|
93 |
-
minimum=128,
|
94 |
-
maximum=1280,
|
95 |
-
step=32,
|
96 |
-
value=512,
|
97 |
-
label=
|
98 |
)
|
99 |
|
100 |
keras_text2image_width = gr.Slider(
|
101 |
-
minimum=128,
|
102 |
-
maximum=1280,
|
103 |
-
step=32,
|
104 |
-
value=512,
|
105 |
-
label=
|
106 |
)
|
107 |
|
108 |
-
keras_text2image_predict = gr.Button(value=
|
109 |
-
|
110 |
with gr.Column():
|
111 |
-
output_image = gr.Gallery(label=
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
keras_text2image_predict.click(
|
114 |
fn=keras_stable_diffusion,
|
115 |
inputs=[
|
@@ -119,7 +142,7 @@ def keras_stable_diffusion_app():
|
|
119 |
keras_text2image_guidance_scale,
|
120 |
keras_text2image_num_inference_step,
|
121 |
keras_text2image_height,
|
122 |
-
keras_text2image_width
|
123 |
],
|
124 |
-
outputs=output_image
|
125 |
)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
from huggingface_hub import from_pretrained_keras
|
4 |
from keras_cv import models
|
5 |
from tensorflow import keras
|
|
|
|
|
6 |
|
7 |
keras_model_list = [
|
8 |
"keras-dreambooth/keras_diffusion_lowpoly_world",
|
|
|
11 |
]
|
12 |
|
13 |
stable_prompt_list = [
|
14 |
+
"a photo of lowpoly_world",
|
15 |
+
"Flower vase inspired by pink floyd division bell",
|
16 |
+
]
|
17 |
+
|
18 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def keras_stable_diffusion(
|
22 |
+
model_path: str,
|
23 |
+
prompt: str,
|
24 |
+
negative_prompt: str,
|
25 |
+
guidance_scale: int,
|
26 |
+
num_inference_step: int,
|
27 |
+
height: int,
|
28 |
+
width: int,
|
29 |
+
):
|
30 |
+
|
31 |
+
with tf.device("/GPU:0"):
|
32 |
keras.mixed_precision.set_global_policy("mixed_float16")
|
33 |
+
|
34 |
sd_dreambooth_model = models.StableDiffusion(
|
35 |
+
img_width=height, img_height=width
|
36 |
+
)
|
37 |
+
|
|
|
38 |
db_diffusion_model = from_pretrained_keras(model_path)
|
39 |
sd_dreambooth_model._diffusion_model = db_diffusion_model
|
40 |
+
|
41 |
generated_images = sd_dreambooth_model.text_to_image(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompt,
|
44 |
num_steps=num_inference_step,
|
45 |
+
unconditional_guidance_scale=guidance_scale,
|
46 |
)
|
47 |
|
48 |
return generated_images
|
49 |
|
50 |
+
|
51 |
def keras_stable_diffusion_app():
|
52 |
with gr.Blocks():
|
53 |
with gr.Row():
|
54 |
with gr.Column():
|
55 |
keras_text2image_model_path = gr.Dropdown(
|
56 |
+
choices=keras_model_list,
|
57 |
+
value=keras_model_list[0],
|
58 |
+
label="Text-Image Model Id",
|
59 |
)
|
60 |
|
61 |
keras_text2image_prompt = gr.Textbox(
|
62 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
63 |
)
|
64 |
|
65 |
keras_text2image_negative_prompt = gr.Textbox(
|
66 |
+
lines=1,
|
67 |
+
value=stable_negative_prompt_list[0],
|
68 |
+
label="Negative Prompt",
|
69 |
)
|
70 |
|
71 |
with gr.Accordion("Advanced Options", open=False):
|
72 |
keras_text2image_guidance_scale = gr.Slider(
|
73 |
+
minimum=0.1,
|
74 |
+
maximum=15,
|
75 |
+
step=0.1,
|
76 |
+
value=7.5,
|
77 |
+
label="Guidance Scale",
|
78 |
)
|
79 |
|
80 |
keras_text2image_num_inference_step = gr.Slider(
|
81 |
+
minimum=1,
|
82 |
+
maximum=100,
|
83 |
+
step=1,
|
84 |
+
value=50,
|
85 |
+
label="Num Inference Step",
|
86 |
)
|
87 |
|
88 |
keras_text2image_height = gr.Slider(
|
89 |
+
minimum=128,
|
90 |
+
maximum=1280,
|
91 |
+
step=32,
|
92 |
+
value=512,
|
93 |
+
label="Image Height",
|
94 |
)
|
95 |
|
96 |
keras_text2image_width = gr.Slider(
|
97 |
+
minimum=128,
|
98 |
+
maximum=1280,
|
99 |
+
step=32,
|
100 |
+
value=512,
|
101 |
+
label="Image Height",
|
102 |
)
|
103 |
|
104 |
+
keras_text2image_predict = gr.Button(value="Generator")
|
105 |
+
|
106 |
with gr.Column():
|
107 |
+
output_image = gr.Gallery(label="Output")
|
108 |
+
|
109 |
+
gr.Examples(
|
110 |
+
fn=keras_stable_diffusion,
|
111 |
+
inputs=[
|
112 |
+
keras_text2image_model_path,
|
113 |
+
keras_text2image_prompt,
|
114 |
+
keras_text2image_negative_prompt,
|
115 |
+
keras_text2image_guidance_scale,
|
116 |
+
keras_text2image_num_inference_step,
|
117 |
+
keras_text2image_height,
|
118 |
+
keras_text2image_width,
|
119 |
+
],
|
120 |
+
outputs=[output_image],
|
121 |
+
examples=[
|
122 |
+
[
|
123 |
+
keras_model_list[0],
|
124 |
+
stable_prompt_list[0],
|
125 |
+
stable_negative_prompt_list[0],
|
126 |
+
7.5,
|
127 |
+
50,
|
128 |
+
512,
|
129 |
+
512,
|
130 |
+
],
|
131 |
+
],
|
132 |
+
label="Keras Stable Diffusion Example",
|
133 |
+
cache_examples=False,
|
134 |
+
)
|
135 |
+
|
136 |
keras_text2image_predict.click(
|
137 |
fn=keras_stable_diffusion,
|
138 |
inputs=[
|
|
|
142 |
keras_text2image_guidance_scale,
|
143 |
keras_text2image_num_inference_step,
|
144 |
keras_text2image_height,
|
145 |
+
keras_text2image_width,
|
146 |
],
|
147 |
+
outputs=output_image,
|
148 |
)
|
diffusion_webui/stable_diffusion/text2img_app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
4 |
|
5 |
stable_model_list = [
|
6 |
"runwayml/stable-diffusion-v1-5",
|
@@ -10,34 +10,26 @@ stable_model_list = [
|
|
10 |
"andite/anything-v4.0",
|
11 |
"Lykon/DreamShaper",
|
12 |
"nitrosocke/Nitro-Diffusion",
|
13 |
-
"dreamlike-art/dreamlike-diffusion-1.0"
|
14 |
-
|
15 |
]
|
16 |
|
17 |
-
stable_prompt_list = [
|
18 |
-
|
19 |
-
|
20 |
-
]
|
21 |
|
22 |
-
stable_negative_prompt_list = [
|
23 |
-
"bad, ugly",
|
24 |
-
"deformed"
|
25 |
-
]
|
26 |
|
27 |
def stable_diffusion_text2img(
|
28 |
-
model_path:str,
|
29 |
-
prompt:str,
|
30 |
-
negative_prompt:str,
|
31 |
-
guidance_scale:int,
|
32 |
-
num_inference_step:int,
|
33 |
-
height:int,
|
34 |
-
width:int,
|
35 |
-
|
36 |
|
37 |
pipe = StableDiffusionPipeline.from_pretrained(
|
38 |
-
model_path,
|
39 |
-
safety_checker=None,
|
40 |
-
torch_dtype=torch.float16
|
41 |
).to("cuda")
|
42 |
|
43 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
@@ -54,67 +46,91 @@ def stable_diffusion_text2img(
|
|
54 |
|
55 |
return images[0]
|
56 |
|
|
|
57 |
def stable_diffusion_text2img_app():
|
58 |
with gr.Blocks():
|
59 |
with gr.Row():
|
60 |
with gr.Column():
|
61 |
text2image_model_path = gr.Dropdown(
|
62 |
-
choices=stable_model_list,
|
63 |
-
value=stable_model_list[0],
|
64 |
-
label=
|
65 |
)
|
66 |
|
67 |
text2image_prompt = gr.Textbox(
|
68 |
-
lines=1,
|
69 |
-
value=stable_prompt_list[0],
|
70 |
-
label='Prompt'
|
71 |
)
|
72 |
|
73 |
text2image_negative_prompt = gr.Textbox(
|
74 |
-
lines=1,
|
75 |
-
value=stable_negative_prompt_list[0],
|
76 |
-
label=
|
77 |
)
|
78 |
|
79 |
with gr.Accordion("Advanced Options", open=False):
|
80 |
text2image_guidance_scale = gr.Slider(
|
81 |
-
minimum=0.1,
|
82 |
-
maximum=15,
|
83 |
-
step=0.1,
|
84 |
-
value=7.5,
|
85 |
-
label=
|
86 |
)
|
87 |
|
88 |
text2image_num_inference_step = gr.Slider(
|
89 |
-
minimum=1,
|
90 |
-
maximum=100,
|
91 |
-
step=1,
|
92 |
-
value=50,
|
93 |
-
label=
|
94 |
)
|
95 |
|
96 |
text2image_height = gr.Slider(
|
97 |
-
minimum=128,
|
98 |
-
maximum=1280,
|
99 |
-
step=32,
|
100 |
-
value=512,
|
101 |
-
label=
|
102 |
)
|
103 |
|
104 |
text2image_width = gr.Slider(
|
105 |
-
minimum=128,
|
106 |
-
maximum=1280,
|
107 |
-
step=32,
|
108 |
-
value=768,
|
109 |
-
label=
|
110 |
)
|
111 |
|
112 |
-
text2image_predict = gr.Button(value=
|
113 |
-
|
114 |
with gr.Column():
|
115 |
-
output_image = gr.Image(label=
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
text2image_predict.click(
|
119 |
fn=stable_diffusion_text2img,
|
120 |
inputs=[
|
@@ -126,5 +142,5 @@ def stable_diffusion_text2img_app():
|
|
126 |
text2image_height,
|
127 |
text2image_width,
|
128 |
],
|
129 |
-
outputs=output_image
|
130 |
)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
4 |
|
5 |
stable_model_list = [
|
6 |
"runwayml/stable-diffusion-v1-5",
|
|
|
10 |
"andite/anything-v4.0",
|
11 |
"Lykon/DreamShaper",
|
12 |
"nitrosocke/Nitro-Diffusion",
|
13 |
+
"dreamlike-art/dreamlike-diffusion-1.0",
|
|
|
14 |
]
|
15 |
|
16 |
+
stable_prompt_list = ["a photo of a man.", "a photo of a girl."]
|
17 |
+
|
18 |
+
stable_negative_prompt_list = ["bad, ugly", "deformed"]
|
|
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def stable_diffusion_text2img(
|
22 |
+
model_path: str,
|
23 |
+
prompt: str,
|
24 |
+
negative_prompt: str,
|
25 |
+
guidance_scale: int,
|
26 |
+
num_inference_step: int,
|
27 |
+
height: int,
|
28 |
+
width: int,
|
29 |
+
):
|
30 |
|
31 |
pipe = StableDiffusionPipeline.from_pretrained(
|
32 |
+
model_path, safety_checker=None, torch_dtype=torch.float16
|
|
|
|
|
33 |
).to("cuda")
|
34 |
|
35 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
|
46 |
|
47 |
return images[0]
|
48 |
|
49 |
+
|
50 |
def stable_diffusion_text2img_app():
|
51 |
with gr.Blocks():
|
52 |
with gr.Row():
|
53 |
with gr.Column():
|
54 |
text2image_model_path = gr.Dropdown(
|
55 |
+
choices=stable_model_list,
|
56 |
+
value=stable_model_list[0],
|
57 |
+
label="Text-Image Model Id",
|
58 |
)
|
59 |
|
60 |
text2image_prompt = gr.Textbox(
|
61 |
+
lines=1, value=stable_prompt_list[0], label="Prompt"
|
|
|
|
|
62 |
)
|
63 |
|
64 |
text2image_negative_prompt = gr.Textbox(
|
65 |
+
lines=1,
|
66 |
+
value=stable_negative_prompt_list[0],
|
67 |
+
label="Negative Prompt",
|
68 |
)
|
69 |
|
70 |
with gr.Accordion("Advanced Options", open=False):
|
71 |
text2image_guidance_scale = gr.Slider(
|
72 |
+
minimum=0.1,
|
73 |
+
maximum=15,
|
74 |
+
step=0.1,
|
75 |
+
value=7.5,
|
76 |
+
label="Guidance Scale",
|
77 |
)
|
78 |
|
79 |
text2image_num_inference_step = gr.Slider(
|
80 |
+
minimum=1,
|
81 |
+
maximum=100,
|
82 |
+
step=1,
|
83 |
+
value=50,
|
84 |
+
label="Num Inference Step",
|
85 |
)
|
86 |
|
87 |
text2image_height = gr.Slider(
|
88 |
+
minimum=128,
|
89 |
+
maximum=1280,
|
90 |
+
step=32,
|
91 |
+
value=512,
|
92 |
+
label="Image Height",
|
93 |
)
|
94 |
|
95 |
text2image_width = gr.Slider(
|
96 |
+
minimum=128,
|
97 |
+
maximum=1280,
|
98 |
+
step=32,
|
99 |
+
value=768,
|
100 |
+
label="Image Width",
|
101 |
)
|
102 |
|
103 |
+
text2image_predict = gr.Button(value="Generator")
|
104 |
+
|
105 |
with gr.Column():
|
106 |
+
output_image = gr.Image(label="Output")
|
107 |
+
|
108 |
+
gr.Examples(
|
109 |
+
examples=[
|
110 |
+
[
|
111 |
+
stable_model_list[0],
|
112 |
+
stable_prompt_list[0],
|
113 |
+
stable_negative_prompt_list[0],
|
114 |
+
7.5,
|
115 |
+
50,
|
116 |
+
512,
|
117 |
+
768,
|
118 |
+
]
|
119 |
+
],
|
120 |
+
inputs=[
|
121 |
+
text2image_model_path,
|
122 |
+
text2image_prompt,
|
123 |
+
text2image_negative_prompt,
|
124 |
+
text2image_guidance_scale,
|
125 |
+
text2image_num_inference_step,
|
126 |
+
text2image_height,
|
127 |
+
text2image_width,
|
128 |
+
],
|
129 |
+
outputs=[output_image],
|
130 |
+
cache_examples=False,
|
131 |
+
fn=stable_diffusion_text2img,
|
132 |
+
label="Text2Image Example",
|
133 |
+
)
|
134 |
text2image_predict.click(
|
135 |
fn=stable_diffusion_text2img,
|
136 |
inputs=[
|
|
|
142 |
text2image_height,
|
143 |
text2image_width,
|
144 |
],
|
145 |
+
outputs=output_image,
|
146 |
)
|
pyproject.toml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.black]
|
2 |
+
line-length = 80
|
3 |
+
|
4 |
+
[tool.isort]
|
5 |
+
line_length = 80
|
6 |
+
profile = "black"
|
script/code_formatter.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
black . --config pyproject.toml
|
2 |
+
isort .
|