kadirnar commited on
Commit
7086050
·
1 Parent(s): 426cfe2

Update diffusion_webui/utils/preprocces_utils.py

Browse files
diffusion_webui/utils/preprocces_utils.py CHANGED
@@ -14,6 +14,10 @@ from controlnet_aux import (
14
  ZoeDetector,
15
  )
16
 
 
 
 
 
17
  PREPROCCES_DICT = {
18
  "Hed": HEDdetector.from_pretrained("lllyasviel/Annotators"),
19
  "Midas": MidasDetector.from_pretrained("lllyasviel/Annotators"),
@@ -30,3 +34,59 @@ PREPROCCES_DICT = {
30
  "ContentShuffle": ContentShuffleDetector(),
31
  "MediapipeFace": MediapipeFaceDetector(),
32
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ZoeDetector,
15
  )
16
 
17
+ import numpmy as np
18
+ import cv2
19
+
20
+
21
  PREPROCCES_DICT = {
22
  "Hed": HEDdetector.from_pretrained("lllyasviel/Annotators"),
23
  "Midas": MidasDetector.from_pretrained("lllyasviel/Annotators"),
 
34
  "ContentShuffle": ContentShuffleDetector(),
35
  "MediapipeFace": MediapipeFaceDetector(),
36
  }
37
+
38
+ def pad64(x):
39
+ return int(np.ceil(float(x) / 64.0) * 64 - x)
40
+
41
+ def HWC3(x):
42
+ assert x.dtype == np.uint8
43
+ if x.ndim == 2:
44
+ x = x[:, :, None]
45
+ assert x.ndim == 3
46
+ H, W, C = x.shape
47
+ assert C == 1 or C == 3 or C == 4
48
+ if C == 3:
49
+ return x
50
+ if C == 1:
51
+ return np.concatenate([x, x, x], axis=2)
52
+ if C == 4:
53
+ color = x[:, :, 0:3].astype(np.float32)
54
+ alpha = x[:, :, 3:4].astype(np.float32) / 255.0
55
+ y = color * alpha + 255.0 * (1.0 - alpha)
56
+ y = y.clip(0, 255).astype(np.uint8)
57
+ return y
58
+
59
+ def safer_memory(x):
60
+ return np.ascontiguousarray(x.copy()).copy()
61
+
62
+
63
+ def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
64
+ if skip_hwc3:
65
+ img = input_image
66
+ else:
67
+ img = HWC3(input_image)
68
+
69
+ H_raw, W_raw, _ = img.shape
70
+ k = float(resolution) / float(min(H_raw, W_raw))
71
+ interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
72
+ H_target = int(np.round(float(H_raw) * k))
73
+ W_target = int(np.round(float(W_raw) * k))
74
+ img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
75
+ H_pad, W_pad = pad64(H_target), pad64(W_target)
76
+ img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
77
+
78
+ def remove_pad(x):
79
+ return safer_memory(x[:H_target, :W_target])
80
+
81
+ return safer_memory(img_padded), remove_pad
82
+
83
+
84
+ def scribble_xdog(img, res=512, thr_a=32, **kwargs):
85
+ img, remove_pad = resize_image_with_pad(img, res)
86
+ g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
87
+ g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
88
+ dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
89
+ result = np.zeros_like(img, dtype=np.uint8)
90
+ result[2 * (255 - dog) > thr_a] = 255
91
+ return remove_pad(result), True
92
+