from diffusers import StableDiffusionImg2ImgPipeline, DDIMScheduler from IPython.display import display from PIL import Image import torch def stable_diffusion_img2img( model_path:str, image_path:str, prompt:str, negative_prompt:str, num_samples:int, guidance_scale:int, num_inference_step:int, ): image = Image.open(image_path) pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_path, safety_checker=None, torch_dtype=torch.float16 ) pipe.to("cuda") pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() output = pipe( prompt = prompt, image = image, negative_prompt = negative_prompt, num_images_per_prompt = num_samples, num_inference_steps = num_inference_step, guidance_scale = guidance_scale, ).images return output