|
import logging |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from .backbone import Backbone |
|
from .utils import ( |
|
PatchEmbed, |
|
add_decomposed_rel_pos, |
|
get_abs_pos, |
|
window_partition, |
|
window_unpartition, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
__all__ = ["MViT"] |
|
|
|
|
|
def attention_pool(x, pool, norm=None): |
|
|
|
x = x.permute(0, 3, 1, 2) |
|
x = pool(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
if norm: |
|
x = norm(x) |
|
|
|
return x |
|
|
|
|
|
class MultiScaleAttention(nn.Module): |
|
"""Multiscale Multi-head Attention block.""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
dim_out, |
|
num_heads, |
|
qkv_bias=True, |
|
norm_layer=nn.LayerNorm, |
|
pool_kernel=(3, 3), |
|
stride_q=1, |
|
stride_kv=1, |
|
residual_pooling=True, |
|
window_size=0, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
input_size=None, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
dim_out (int): Number of output channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool: If True, add a learnable bias to query, key, value. |
|
norm_layer (nn.Module): Normalization layer. |
|
pool_kernel (tuple): kernel size for qkv pooling layers. |
|
stride_q (int): stride size for q pooling layer. |
|
stride_kv (int): stride size for kv pooling layer. |
|
residual_pooling (bool): If true, enable residual pooling. |
|
use_rel_pos (bool): If True, add relative postional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (int or None): Input resolution. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim_out // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim_out, dim_out) |
|
|
|
|
|
pool_padding = [k // 2 for k in pool_kernel] |
|
dim_conv = dim_out // num_heads |
|
self.pool_q = nn.Conv2d( |
|
dim_conv, |
|
dim_conv, |
|
pool_kernel, |
|
stride=stride_q, |
|
padding=pool_padding, |
|
groups=dim_conv, |
|
bias=False, |
|
) |
|
self.norm_q = norm_layer(dim_conv) |
|
self.pool_k = nn.Conv2d( |
|
dim_conv, |
|
dim_conv, |
|
pool_kernel, |
|
stride=stride_kv, |
|
padding=pool_padding, |
|
groups=dim_conv, |
|
bias=False, |
|
) |
|
self.norm_k = norm_layer(dim_conv) |
|
self.pool_v = nn.Conv2d( |
|
dim_conv, |
|
dim_conv, |
|
pool_kernel, |
|
stride=stride_kv, |
|
padding=pool_padding, |
|
groups=dim_conv, |
|
bias=False, |
|
) |
|
self.norm_v = norm_layer(dim_conv) |
|
|
|
self.window_size = window_size |
|
if window_size: |
|
self.q_win_size = window_size // stride_q |
|
self.kv_win_size = window_size // stride_kv |
|
self.residual_pooling = residual_pooling |
|
|
|
self.use_rel_pos = use_rel_pos |
|
if self.use_rel_pos: |
|
|
|
assert input_size[0] == input_size[1] |
|
size = input_size[0] |
|
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1 |
|
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim)) |
|
|
|
if not rel_pos_zero_init: |
|
nn.init.trunc_normal_(self.rel_pos_h, std=0.02) |
|
nn.init.trunc_normal_(self.rel_pos_w, std=0.02) |
|
|
|
def forward(self, x): |
|
B, H, W, _ = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, H, W, 3, self.num_heads, -1).permute(3, 0, 4, 1, 2, 5) |
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H, W, -1).unbind(0) |
|
|
|
q = attention_pool(q, self.pool_q, self.norm_q) |
|
k = attention_pool(k, self.pool_k, self.norm_k) |
|
v = attention_pool(v, self.pool_v, self.norm_v) |
|
|
|
ori_q = q |
|
if self.window_size: |
|
q, q_hw_pad = window_partition(q, self.q_win_size) |
|
k, kv_hw_pad = window_partition(k, self.kv_win_size) |
|
v, _ = window_partition(v, self.kv_win_size) |
|
q_hw = (self.q_win_size, self.q_win_size) |
|
kv_hw = (self.kv_win_size, self.kv_win_size) |
|
else: |
|
q_hw = q.shape[1:3] |
|
kv_hw = k.shape[1:3] |
|
|
|
q = q.view(q.shape[0], np.prod(q_hw), -1) |
|
k = k.view(k.shape[0], np.prod(kv_hw), -1) |
|
v = v.view(v.shape[0], np.prod(kv_hw), -1) |
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
|
|
if self.use_rel_pos: |
|
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, q_hw, kv_hw) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = attn @ v |
|
|
|
x = x.view(x.shape[0], q_hw[0], q_hw[1], -1) |
|
|
|
if self.window_size: |
|
x = window_unpartition(x, self.q_win_size, q_hw_pad, ori_q.shape[1:3]) |
|
|
|
if self.residual_pooling: |
|
x += ori_q |
|
|
|
H, W = x.shape[1], x.shape[2] |
|
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
class MultiScaleBlock(nn.Module): |
|
"""Multiscale Transformer blocks""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
dim_out, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
qkv_pool_kernel=(3, 3), |
|
stride_q=1, |
|
stride_kv=1, |
|
residual_pooling=True, |
|
window_size=0, |
|
use_rel_pos=False, |
|
rel_pos_zero_init=True, |
|
input_size=None, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
dim_out (int): Number of output channels. |
|
num_heads (int): Number of attention heads in the MViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
qkv_pool_kernel (tuple): kernel size for qkv pooling layers. |
|
stride_q (int): stride size for q pooling layer. |
|
stride_kv (int): stride size for kv pooling layer. |
|
residual_pooling (bool): If true, enable residual pooling. |
|
window_size (int): Window size for window attention blocks. If it equals 0, then not |
|
use window attention. |
|
use_rel_pos (bool): If True, add relative postional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (int or None): Input resolution. |
|
""" |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = MultiScaleAttention( |
|
dim, |
|
dim_out, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
pool_kernel=qkv_pool_kernel, |
|
stride_q=stride_q, |
|
stride_kv=stride_kv, |
|
residual_pooling=residual_pooling, |
|
window_size=window_size, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
input_size=input_size, |
|
) |
|
|
|
from timm.models.layers import DropPath, Mlp |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim_out) |
|
self.mlp = Mlp( |
|
in_features=dim_out, |
|
hidden_features=int(dim_out * mlp_ratio), |
|
out_features=dim_out, |
|
act_layer=act_layer, |
|
) |
|
|
|
if dim != dim_out: |
|
self.proj = nn.Linear(dim, dim_out) |
|
|
|
if stride_q > 1: |
|
kernel_skip = stride_q + 1 |
|
padding_skip = int(kernel_skip // 2) |
|
self.pool_skip = nn.MaxPool2d(kernel_skip, stride_q, padding_skip, ceil_mode=False) |
|
|
|
def forward(self, x): |
|
x_norm = self.norm1(x) |
|
x_block = self.attn(x_norm) |
|
|
|
if hasattr(self, "proj"): |
|
x = self.proj(x_norm) |
|
if hasattr(self, "pool_skip"): |
|
x = attention_pool(x, self.pool_skip) |
|
|
|
x = x + self.drop_path(x_block) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class MViT(Backbone): |
|
""" |
|
This module implements Multiscale Vision Transformer (MViT) backbone in :paper:'mvitv2'. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_kernel=(7, 7), |
|
patch_stride=(4, 4), |
|
patch_padding=(3, 3), |
|
in_chans=3, |
|
embed_dim=96, |
|
depth=16, |
|
num_heads=1, |
|
last_block_indexes=(0, 2, 11, 15), |
|
qkv_pool_kernel=(3, 3), |
|
adaptive_kv_stride=4, |
|
adaptive_window_size=56, |
|
residual_pooling=True, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
use_abs_pos=False, |
|
use_rel_pos=True, |
|
rel_pos_zero_init=True, |
|
use_act_checkpoint=False, |
|
pretrain_img_size=224, |
|
pretrain_use_cls_token=True, |
|
out_features=("scale2", "scale3", "scale4", "scale5"), |
|
): |
|
""" |
|
Args: |
|
img_size (int): Input image size. |
|
patch_kernel (tuple): kernel size for patch embedding. |
|
patch_stride (tuple): stride size for patch embedding. |
|
patch_padding (tuple): padding size for patch embedding. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
depth (int): Depth of MViT. |
|
num_heads (int): Number of base attention heads in each MViT block. |
|
last_block_indexes (tuple): Block indexes for last blocks in each stage. |
|
qkv_pool_kernel (tuple): kernel size for qkv pooling layers. |
|
adaptive_kv_stride (int): adaptive stride size for kv pooling. |
|
adaptive_window_size (int): adaptive window size for window attention blocks. |
|
residual_pooling (bool): If true, enable residual pooling. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path_rate (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_abs_pos (bool): If True, use absolute positional embeddings. |
|
use_rel_pos (bool): If True, add relative postional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. |
|
use_act_checkpoint (bool): If True, use activation checkpointing. |
|
pretrain_img_size (int): input image size for pretraining models. |
|
pretrain_use_cls_token (bool): If True, pretrainig models use class token. |
|
out_features (tuple): name of the feature maps from each stage. |
|
""" |
|
super().__init__() |
|
self.pretrain_use_cls_token = pretrain_use_cls_token |
|
|
|
self.patch_embed = PatchEmbed( |
|
kernel_size=patch_kernel, |
|
stride=patch_stride, |
|
padding=patch_padding, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
if use_abs_pos: |
|
|
|
num_patches = (pretrain_img_size // patch_stride[0]) * ( |
|
pretrain_img_size // patch_stride[1] |
|
) |
|
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
dim_out = embed_dim |
|
stride_kv = adaptive_kv_stride |
|
window_size = adaptive_window_size |
|
input_size = (img_size // patch_stride[0], img_size // patch_stride[1]) |
|
stage = 2 |
|
stride = patch_stride[0] |
|
self._out_feature_strides = {} |
|
self._out_feature_channels = {} |
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
|
|
if i == last_block_indexes[1] or i == last_block_indexes[2]: |
|
stride_kv_ = stride_kv * 2 |
|
else: |
|
stride_kv_ = stride_kv |
|
|
|
window_size_ = 0 if i in last_block_indexes[1:] else window_size |
|
block = MultiScaleBlock( |
|
dim=embed_dim, |
|
dim_out=dim_out, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
qkv_pool_kernel=qkv_pool_kernel, |
|
stride_q=2 if i - 1 in last_block_indexes else 1, |
|
stride_kv=stride_kv_, |
|
residual_pooling=residual_pooling, |
|
window_size=window_size_, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
input_size=input_size, |
|
) |
|
if use_act_checkpoint: |
|
|
|
from fairscale.nn.checkpoint import checkpoint_wrapper |
|
|
|
block = checkpoint_wrapper(block) |
|
self.blocks.append(block) |
|
|
|
embed_dim = dim_out |
|
if i in last_block_indexes: |
|
name = f"scale{stage}" |
|
if name in out_features: |
|
self._out_feature_channels[name] = dim_out |
|
self._out_feature_strides[name] = stride |
|
self.add_module(f"{name}_norm", norm_layer(dim_out)) |
|
|
|
dim_out *= 2 |
|
num_heads *= 2 |
|
stride_kv = max(stride_kv // 2, 1) |
|
stride *= 2 |
|
stage += 1 |
|
if i - 1 in last_block_indexes: |
|
window_size = window_size // 2 |
|
input_size = [s // 2 for s in input_size] |
|
|
|
self._out_features = out_features |
|
self._last_block_indexes = last_block_indexes |
|
|
|
if self.pos_embed is not None: |
|
nn.init.trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x): |
|
x = self.patch_embed(x) |
|
|
|
if self.pos_embed is not None: |
|
x = x + get_abs_pos(self.pos_embed, self.pretrain_use_cls_token, x.shape[1:3]) |
|
|
|
outputs = {} |
|
stage = 2 |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if i in self._last_block_indexes: |
|
name = f"scale{stage}" |
|
if name in self._out_features: |
|
x_out = getattr(self, f"{name}_norm")(x) |
|
outputs[name] = x_out.permute(0, 3, 1, 2) |
|
stage += 1 |
|
|
|
return outputs |
|
|