|
|
|
|
|
import logging |
|
from typing import List, Optional, Tuple |
|
import torch |
|
from fvcore.nn import sigmoid_focal_loss_jit |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from detectron2.layers import ShapeSpec, batched_nms |
|
from detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance |
|
from detectron2.utils.events import get_event_storage |
|
|
|
from ..anchor_generator import DefaultAnchorGenerator |
|
from ..backbone import Backbone |
|
from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss |
|
from .dense_detector import DenseDetector |
|
from .retinanet import RetinaNetHead |
|
|
|
__all__ = ["FCOS"] |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class FCOS(DenseDetector): |
|
""" |
|
Implement FCOS in :paper:`fcos`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
backbone: Backbone, |
|
head: nn.Module, |
|
head_in_features: Optional[List[str]] = None, |
|
box2box_transform=None, |
|
num_classes, |
|
center_sampling_radius: float = 1.5, |
|
focal_loss_alpha=0.25, |
|
focal_loss_gamma=2.0, |
|
test_score_thresh=0.2, |
|
test_topk_candidates=1000, |
|
test_nms_thresh=0.6, |
|
max_detections_per_image=100, |
|
pixel_mean, |
|
pixel_std, |
|
): |
|
""" |
|
Args: |
|
center_sampling_radius: radius of the "center" of a groundtruth box, |
|
within which all anchor points are labeled positive. |
|
Other arguments mean the same as in :class:`RetinaNet`. |
|
""" |
|
super().__init__( |
|
backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std |
|
) |
|
|
|
self.num_classes = num_classes |
|
|
|
|
|
|
|
feature_shapes = backbone.output_shape() |
|
fpn_strides = [feature_shapes[k].stride for k in self.head_in_features] |
|
self.anchor_generator = DefaultAnchorGenerator( |
|
sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides |
|
) |
|
|
|
|
|
|
|
if box2box_transform is None: |
|
box2box_transform = Box2BoxTransformLinear(normalize_by_size=True) |
|
self.box2box_transform = box2box_transform |
|
|
|
self.center_sampling_radius = float(center_sampling_radius) |
|
|
|
|
|
self.focal_loss_alpha = focal_loss_alpha |
|
self.focal_loss_gamma = focal_loss_gamma |
|
|
|
|
|
self.test_score_thresh = test_score_thresh |
|
self.test_topk_candidates = test_topk_candidates |
|
self.test_nms_thresh = test_nms_thresh |
|
self.max_detections_per_image = max_detections_per_image |
|
|
|
def forward_training(self, images, features, predictions, gt_instances): |
|
|
|
pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( |
|
predictions, [self.num_classes, 4, 1] |
|
) |
|
anchors = self.anchor_generator(features) |
|
gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) |
|
return self.losses( |
|
anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness |
|
) |
|
|
|
@torch.no_grad() |
|
def _match_anchors(self, gt_boxes: Boxes, anchors: List[Boxes]): |
|
""" |
|
Match ground-truth boxes to a set of multi-level anchors. |
|
|
|
Args: |
|
gt_boxes: Ground-truth boxes from instances of an image. |
|
anchors: List of anchors for each feature map (of different scales). |
|
|
|
Returns: |
|
torch.Tensor |
|
A tensor of shape `(M, R)`, given `M` ground-truth boxes and total |
|
`R` anchor points from all feature levels, indicating the quality |
|
of match between m-th box and r-th anchor. Higher value indicates |
|
better match. |
|
""" |
|
|
|
|
|
num_anchors_per_level = [len(x) for x in anchors] |
|
anchors = Boxes.cat(anchors) |
|
anchor_centers = anchors.get_centers() |
|
anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0] |
|
|
|
lower_bound = anchor_sizes * 4 |
|
lower_bound[: num_anchors_per_level[0]] = 0 |
|
upper_bound = anchor_sizes * 8 |
|
upper_bound[-num_anchors_per_level[-1] :] = float("inf") |
|
|
|
gt_centers = gt_boxes.get_centers() |
|
|
|
|
|
|
|
center_dists = (anchor_centers[None, :, :] - gt_centers[:, None, :]).abs_() |
|
sampling_regions = self.center_sampling_radius * anchor_sizes[None, :] |
|
|
|
match_quality_matrix = center_dists.max(dim=2).values < sampling_regions |
|
|
|
pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_boxes) |
|
pairwise_dist = pairwise_dist.permute(1, 0, 2) |
|
|
|
|
|
match_quality_matrix &= pairwise_dist.min(dim=2).values > 0 |
|
|
|
|
|
|
|
pairwise_dist = pairwise_dist.max(dim=2).values |
|
match_quality_matrix &= (pairwise_dist > lower_bound[None, :]) & ( |
|
pairwise_dist < upper_bound[None, :] |
|
) |
|
|
|
gt_areas = gt_boxes.area() |
|
|
|
match_quality_matrix = match_quality_matrix.to(torch.float32) |
|
match_quality_matrix *= 1e8 - gt_areas[:, None] |
|
return match_quality_matrix |
|
|
|
@torch.no_grad() |
|
def label_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]): |
|
""" |
|
Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS |
|
anchor matching rule. |
|
|
|
Unlike RetinaNet, there are no ignored anchors. |
|
""" |
|
|
|
gt_labels, matched_gt_boxes = [], [] |
|
|
|
for inst in gt_instances: |
|
if len(inst) > 0: |
|
match_quality_matrix = self._match_anchors(inst.gt_boxes, anchors) |
|
|
|
|
|
|
|
|
|
match_quality, matched_idxs = match_quality_matrix.max(dim=0) |
|
matched_idxs[match_quality < 1e-5] = -1 |
|
|
|
matched_gt_boxes_i = inst.gt_boxes.tensor[matched_idxs.clip(min=0)] |
|
gt_labels_i = inst.gt_classes[matched_idxs.clip(min=0)] |
|
|
|
|
|
gt_labels_i[matched_idxs < 0] = self.num_classes |
|
else: |
|
matched_gt_boxes_i = torch.zeros_like(Boxes.cat(anchors).tensor) |
|
gt_labels_i = torch.full( |
|
(len(matched_gt_boxes_i),), |
|
fill_value=self.num_classes, |
|
dtype=torch.long, |
|
device=matched_gt_boxes_i.device, |
|
) |
|
|
|
gt_labels.append(gt_labels_i) |
|
matched_gt_boxes.append(matched_gt_boxes_i) |
|
|
|
return gt_labels, matched_gt_boxes |
|
|
|
def losses( |
|
self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness |
|
): |
|
""" |
|
This method is almost identical to :meth:`RetinaNet.losses`, with an extra |
|
"loss_centerness" in the returned dict. |
|
""" |
|
num_images = len(gt_labels) |
|
gt_labels = torch.stack(gt_labels) |
|
|
|
pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) |
|
num_pos_anchors = pos_mask.sum().item() |
|
get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) |
|
normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300) |
|
|
|
|
|
gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[ |
|
:, :, :-1 |
|
] |
|
loss_cls = sigmoid_focal_loss_jit( |
|
torch.cat(pred_logits, dim=1), |
|
gt_labels_target.to(pred_logits[0].dtype), |
|
alpha=self.focal_loss_alpha, |
|
gamma=self.focal_loss_gamma, |
|
reduction="sum", |
|
) |
|
|
|
loss_box_reg = _dense_box_regression_loss( |
|
anchors, |
|
self.box2box_transform, |
|
pred_anchor_deltas, |
|
gt_boxes, |
|
pos_mask, |
|
box_reg_loss_type="giou", |
|
) |
|
|
|
ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes) |
|
pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2) |
|
ctrness_loss = F.binary_cross_entropy_with_logits( |
|
pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum" |
|
) |
|
return { |
|
"loss_fcos_cls": loss_cls / normalizer, |
|
"loss_fcos_loc": loss_box_reg / normalizer, |
|
"loss_fcos_ctr": ctrness_loss / normalizer, |
|
} |
|
|
|
def compute_ctrness_targets(self, anchors: List[Boxes], gt_boxes: List[torch.Tensor]): |
|
anchors = Boxes.cat(anchors).tensor |
|
reg_targets = [self.box2box_transform.get_deltas(anchors, m) for m in gt_boxes] |
|
reg_targets = torch.stack(reg_targets, dim=0) |
|
if len(reg_targets) == 0: |
|
return reg_targets.new_zeros(len(reg_targets)) |
|
left_right = reg_targets[:, :, [0, 2]] |
|
top_bottom = reg_targets[:, :, [1, 3]] |
|
ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( |
|
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0] |
|
) |
|
return torch.sqrt(ctrness) |
|
|
|
def forward_inference( |
|
self, |
|
images: ImageList, |
|
features: List[torch.Tensor], |
|
predictions: List[List[torch.Tensor]], |
|
): |
|
pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( |
|
predictions, [self.num_classes, 4, 1] |
|
) |
|
anchors = self.anchor_generator(features) |
|
|
|
results: List[Instances] = [] |
|
for img_idx, image_size in enumerate(images.image_sizes): |
|
scores_per_image = [ |
|
|
|
|
|
torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_()) |
|
for x, y in zip(pred_logits, pred_centerness) |
|
] |
|
deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] |
|
results_per_image = self.inference_single_image( |
|
anchors, scores_per_image, deltas_per_image, image_size |
|
) |
|
results.append(results_per_image) |
|
return results |
|
|
|
def inference_single_image( |
|
self, |
|
anchors: List[Boxes], |
|
box_cls: List[torch.Tensor], |
|
box_delta: List[torch.Tensor], |
|
image_size: Tuple[int, int], |
|
): |
|
""" |
|
Identical to :meth:`RetinaNet.inference_single_image. |
|
""" |
|
pred = self._decode_multi_level_predictions( |
|
anchors, |
|
box_cls, |
|
box_delta, |
|
self.test_score_thresh, |
|
self.test_topk_candidates, |
|
image_size, |
|
) |
|
keep = batched_nms( |
|
pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh |
|
) |
|
return pred[keep[: self.max_detections_per_image]] |
|
|
|
|
|
class FCOSHead(RetinaNetHead): |
|
""" |
|
The head used in :paper:`fcos`. It adds an additional centerness |
|
prediction branch on top of :class:`RetinaNetHead`. |
|
""" |
|
|
|
def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs): |
|
super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs) |
|
|
|
|
|
self._num_features = len(input_shape) |
|
self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1) |
|
torch.nn.init.normal_(self.ctrness.weight, std=0.01) |
|
torch.nn.init.constant_(self.ctrness.bias, 0) |
|
|
|
def forward(self, features): |
|
assert len(features) == self._num_features |
|
logits = [] |
|
bbox_reg = [] |
|
ctrness = [] |
|
for feature in features: |
|
logits.append(self.cls_score(self.cls_subnet(feature))) |
|
bbox_feature = self.bbox_subnet(feature) |
|
bbox_reg.append(self.bbox_pred(bbox_feature)) |
|
ctrness.append(self.ctrness(bbox_feature)) |
|
return logits, bbox_reg, ctrness |
|
|