|
|
|
|
|
|
|
import logging |
|
from typing import Dict, List |
|
import torch |
|
from torch import nn |
|
|
|
from detectron2.config import configurable |
|
from detectron2.structures import ImageList |
|
|
|
from ..postprocessing import detector_postprocess, sem_seg_postprocess |
|
from .build import META_ARCH_REGISTRY |
|
from .rcnn import GeneralizedRCNN |
|
from .semantic_seg import build_sem_seg_head |
|
|
|
__all__ = ["PanopticFPN"] |
|
|
|
|
|
@META_ARCH_REGISTRY.register() |
|
class PanopticFPN(GeneralizedRCNN): |
|
""" |
|
Implement the paper :paper:`PanopticFPN`. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
sem_seg_head: nn.Module, |
|
combine_overlap_thresh: float = 0.5, |
|
combine_stuff_area_thresh: float = 4096, |
|
combine_instances_score_thresh: float = 0.5, |
|
**kwargs, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
sem_seg_head: a module for the semantic segmentation head. |
|
combine_overlap_thresh: combine masks into one instances if |
|
they have enough overlap |
|
combine_stuff_area_thresh: ignore stuff areas smaller than this threshold |
|
combine_instances_score_thresh: ignore instances whose score is |
|
smaller than this threshold |
|
|
|
Other arguments are the same as :class:`GeneralizedRCNN`. |
|
""" |
|
super().__init__(**kwargs) |
|
self.sem_seg_head = sem_seg_head |
|
|
|
self.combine_overlap_thresh = combine_overlap_thresh |
|
self.combine_stuff_area_thresh = combine_stuff_area_thresh |
|
self.combine_instances_score_thresh = combine_instances_score_thresh |
|
|
|
@classmethod |
|
def from_config(cls, cfg): |
|
ret = super().from_config(cfg) |
|
ret.update( |
|
{ |
|
"combine_overlap_thresh": cfg.MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH, |
|
"combine_stuff_area_thresh": cfg.MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT, |
|
"combine_instances_score_thresh": cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH, |
|
} |
|
) |
|
ret["sem_seg_head"] = build_sem_seg_head(cfg, ret["backbone"].output_shape()) |
|
logger = logging.getLogger(__name__) |
|
if not cfg.MODEL.PANOPTIC_FPN.COMBINE.ENABLED: |
|
logger.warning( |
|
"PANOPTIC_FPN.COMBINED.ENABLED is no longer used. " |
|
" model.inference(do_postprocess=) should be used to toggle postprocessing." |
|
) |
|
if cfg.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT != 1.0: |
|
w = cfg.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT |
|
logger.warning( |
|
"PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT should be replaced by weights on each ROI head." |
|
) |
|
|
|
def update_weight(x): |
|
if isinstance(x, dict): |
|
return {k: v * w for k, v in x.items()} |
|
else: |
|
return x * w |
|
|
|
roi_heads = ret["roi_heads"] |
|
roi_heads.box_predictor.loss_weight = update_weight(roi_heads.box_predictor.loss_weight) |
|
roi_heads.mask_head.loss_weight = update_weight(roi_heads.mask_head.loss_weight) |
|
return ret |
|
|
|
def forward(self, batched_inputs): |
|
""" |
|
Args: |
|
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. |
|
Each item in the list contains the inputs for one image. |
|
|
|
For now, each item in the list is a dict that contains: |
|
|
|
* "image": Tensor, image in (C, H, W) format. |
|
* "instances": Instances |
|
* "sem_seg": semantic segmentation ground truth. |
|
* Other information that's included in the original dicts, such as: |
|
"height", "width" (int): the output resolution of the model, used in inference. |
|
See :meth:`postprocess` for details. |
|
|
|
Returns: |
|
list[dict]: |
|
each dict has the results for one image. The dict contains the following keys: |
|
|
|
* "instances": see :meth:`GeneralizedRCNN.forward` for its format. |
|
* "sem_seg": see :meth:`SemanticSegmentor.forward` for its format. |
|
* "panoptic_seg": See the return value of |
|
:func:`combine_semantic_and_instance_outputs` for its format. |
|
""" |
|
if not self.training: |
|
return self.inference(batched_inputs) |
|
images = self.preprocess_image(batched_inputs) |
|
features = self.backbone(images.tensor) |
|
|
|
assert "sem_seg" in batched_inputs[0] |
|
gt_sem_seg = [x["sem_seg"].to(self.device) for x in batched_inputs] |
|
gt_sem_seg = ImageList.from_tensors( |
|
gt_sem_seg, |
|
self.backbone.size_divisibility, |
|
self.sem_seg_head.ignore_value, |
|
self.backbone.padding_constraints, |
|
).tensor |
|
sem_seg_results, sem_seg_losses = self.sem_seg_head(features, gt_sem_seg) |
|
|
|
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] |
|
proposals, proposal_losses = self.proposal_generator(images, features, gt_instances) |
|
detector_results, detector_losses = self.roi_heads( |
|
images, features, proposals, gt_instances |
|
) |
|
|
|
losses = sem_seg_losses |
|
losses.update(proposal_losses) |
|
losses.update(detector_losses) |
|
return losses |
|
|
|
def inference(self, batched_inputs: List[Dict[str, torch.Tensor]], do_postprocess: bool = True): |
|
""" |
|
Run inference on the given inputs. |
|
|
|
Args: |
|
batched_inputs (list[dict]): same as in :meth:`forward` |
|
do_postprocess (bool): whether to apply post-processing on the outputs. |
|
|
|
Returns: |
|
When do_postprocess=True, see docs in :meth:`forward`. |
|
Otherwise, returns a (list[Instances], list[Tensor]) that contains |
|
the raw detector outputs, and raw semantic segmentation outputs. |
|
""" |
|
images = self.preprocess_image(batched_inputs) |
|
features = self.backbone(images.tensor) |
|
sem_seg_results, sem_seg_losses = self.sem_seg_head(features, None) |
|
proposals, _ = self.proposal_generator(images, features, None) |
|
detector_results, _ = self.roi_heads(images, features, proposals, None) |
|
|
|
if do_postprocess: |
|
processed_results = [] |
|
for sem_seg_result, detector_result, input_per_image, image_size in zip( |
|
sem_seg_results, detector_results, batched_inputs, images.image_sizes |
|
): |
|
height = input_per_image.get("height", image_size[0]) |
|
width = input_per_image.get("width", image_size[1]) |
|
sem_seg_r = sem_seg_postprocess(sem_seg_result, image_size, height, width) |
|
detector_r = detector_postprocess(detector_result, height, width) |
|
|
|
processed_results.append({"sem_seg": sem_seg_r, "instances": detector_r}) |
|
|
|
panoptic_r = combine_semantic_and_instance_outputs( |
|
detector_r, |
|
sem_seg_r.argmax(dim=0), |
|
self.combine_overlap_thresh, |
|
self.combine_stuff_area_thresh, |
|
self.combine_instances_score_thresh, |
|
) |
|
processed_results[-1]["panoptic_seg"] = panoptic_r |
|
return processed_results |
|
else: |
|
return detector_results, sem_seg_results |
|
|
|
|
|
def combine_semantic_and_instance_outputs( |
|
instance_results, |
|
semantic_results, |
|
overlap_threshold, |
|
stuff_area_thresh, |
|
instances_score_thresh, |
|
): |
|
""" |
|
Implement a simple combining logic following |
|
"combine_semantic_and_instance_predictions.py" in panopticapi |
|
to produce panoptic segmentation outputs. |
|
|
|
Args: |
|
instance_results: output of :func:`detector_postprocess`. |
|
semantic_results: an (H, W) tensor, each element is the contiguous semantic |
|
category id |
|
|
|
Returns: |
|
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. |
|
segments_info (list[dict]): Describe each segment in `panoptic_seg`. |
|
Each dict contains keys "id", "category_id", "isthing". |
|
""" |
|
panoptic_seg = torch.zeros_like(semantic_results, dtype=torch.int32) |
|
|
|
|
|
sorted_inds = torch.argsort(-instance_results.scores) |
|
|
|
current_segment_id = 0 |
|
segments_info = [] |
|
|
|
instance_masks = instance_results.pred_masks.to(dtype=torch.bool, device=panoptic_seg.device) |
|
|
|
|
|
for inst_id in sorted_inds: |
|
score = instance_results.scores[inst_id].item() |
|
if score < instances_score_thresh: |
|
break |
|
mask = instance_masks[inst_id] |
|
mask_area = mask.sum().item() |
|
|
|
if mask_area == 0: |
|
continue |
|
|
|
intersect = (mask > 0) & (panoptic_seg > 0) |
|
intersect_area = intersect.sum().item() |
|
|
|
if intersect_area * 1.0 / mask_area > overlap_threshold: |
|
continue |
|
|
|
if intersect_area > 0: |
|
mask = mask & (panoptic_seg == 0) |
|
|
|
current_segment_id += 1 |
|
panoptic_seg[mask] = current_segment_id |
|
segments_info.append( |
|
{ |
|
"id": current_segment_id, |
|
"isthing": True, |
|
"score": score, |
|
"category_id": instance_results.pred_classes[inst_id].item(), |
|
"instance_id": inst_id.item(), |
|
} |
|
) |
|
|
|
|
|
semantic_labels = torch.unique(semantic_results).cpu().tolist() |
|
for semantic_label in semantic_labels: |
|
if semantic_label == 0: |
|
continue |
|
mask = (semantic_results == semantic_label) & (panoptic_seg == 0) |
|
mask_area = mask.sum().item() |
|
if mask_area < stuff_area_thresh: |
|
continue |
|
|
|
current_segment_id += 1 |
|
panoptic_seg[mask] = current_segment_id |
|
segments_info.append( |
|
{ |
|
"id": current_segment_id, |
|
"isthing": False, |
|
"category_id": semantic_label, |
|
"area": mask_area, |
|
} |
|
) |
|
|
|
return panoptic_seg, segments_info |
|
|