|
|
|
from typing import Dict, List, Optional, Tuple, Union |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from detectron2.config import configurable |
|
from detectron2.layers import Conv2d, ShapeSpec, cat |
|
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou |
|
from detectron2.utils.events import get_event_storage |
|
from detectron2.utils.memory import retry_if_cuda_oom |
|
from detectron2.utils.registry import Registry |
|
|
|
from ..anchor_generator import build_anchor_generator |
|
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss |
|
from ..matcher import Matcher |
|
from ..sampling import subsample_labels |
|
from .build import PROPOSAL_GENERATOR_REGISTRY |
|
from .proposal_utils import find_top_rpn_proposals |
|
|
|
RPN_HEAD_REGISTRY = Registry("RPN_HEAD") |
|
RPN_HEAD_REGISTRY.__doc__ = """ |
|
Registry for RPN heads, which take feature maps and perform |
|
objectness classification and bounding box regression for anchors. |
|
|
|
The registered object will be called with `obj(cfg, input_shape)`. |
|
The call should return a `nn.Module` object. |
|
""" |
|
|
|
|
|
""" |
|
Shape shorthand in this module: |
|
|
|
N: number of images in the minibatch |
|
L: number of feature maps per image on which RPN is run |
|
A: number of cell anchors (must be the same for all feature maps) |
|
Hi, Wi: height and width of the i-th feature map |
|
B: size of the box parameterization |
|
|
|
Naming convention: |
|
|
|
objectness: refers to the binary classification of an anchor as object vs. not object. |
|
|
|
deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box |
|
transform (see :class:`box_regression.Box2BoxTransform`), or 5d for rotated boxes. |
|
|
|
pred_objectness_logits: predicted objectness scores in [-inf, +inf]; use |
|
sigmoid(pred_objectness_logits) to estimate P(object). |
|
|
|
gt_labels: ground-truth binary classification labels for objectness |
|
|
|
pred_anchor_deltas: predicted box2box transform deltas |
|
|
|
gt_anchor_deltas: ground-truth box2box transform deltas |
|
""" |
|
|
|
|
|
def build_rpn_head(cfg, input_shape): |
|
""" |
|
Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`. |
|
""" |
|
name = cfg.MODEL.RPN.HEAD_NAME |
|
return RPN_HEAD_REGISTRY.get(name)(cfg, input_shape) |
|
|
|
|
|
@RPN_HEAD_REGISTRY.register() |
|
class StandardRPNHead(nn.Module): |
|
""" |
|
Standard RPN classification and regression heads described in :paper:`Faster R-CNN`. |
|
Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts |
|
objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas |
|
specifying how to deform each anchor into an object proposal. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, *, in_channels: int, num_anchors: int, box_dim: int = 4, conv_dims: List[int] = (-1,) |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
in_channels (int): number of input feature channels. When using multiple |
|
input features, they must have the same number of channels. |
|
num_anchors (int): number of anchors to predict for *each spatial position* |
|
on the feature map. The total number of anchors for each |
|
feature map will be `num_anchors * H * W`. |
|
box_dim (int): dimension of a box, which is also the number of box regression |
|
predictions to make for each anchor. An axis aligned box has |
|
box_dim=4, while a rotated box has box_dim=5. |
|
conv_dims (list[int]): a list of integers representing the output channels |
|
of N conv layers. Set it to -1 to use the same number of output channels |
|
as input channels. |
|
""" |
|
super().__init__() |
|
cur_channels = in_channels |
|
|
|
|
|
if len(conv_dims) == 1: |
|
out_channels = cur_channels if conv_dims[0] == -1 else conv_dims[0] |
|
|
|
self.conv = self._get_rpn_conv(cur_channels, out_channels) |
|
cur_channels = out_channels |
|
else: |
|
self.conv = nn.Sequential() |
|
for k, conv_dim in enumerate(conv_dims): |
|
out_channels = cur_channels if conv_dim == -1 else conv_dim |
|
if out_channels <= 0: |
|
raise ValueError( |
|
f"Conv output channels should be greater than 0. Got {out_channels}" |
|
) |
|
conv = self._get_rpn_conv(cur_channels, out_channels) |
|
self.conv.add_module(f"conv{k}", conv) |
|
cur_channels = out_channels |
|
|
|
self.objectness_logits = nn.Conv2d(cur_channels, num_anchors, kernel_size=1, stride=1) |
|
|
|
self.anchor_deltas = nn.Conv2d(cur_channels, num_anchors * box_dim, kernel_size=1, stride=1) |
|
|
|
|
|
for layer in self.modules(): |
|
if isinstance(layer, nn.Conv2d): |
|
nn.init.normal_(layer.weight, std=0.01) |
|
nn.init.constant_(layer.bias, 0) |
|
|
|
def _get_rpn_conv(self, in_channels, out_channels): |
|
return Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
activation=nn.ReLU(), |
|
) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
|
|
in_channels = [s.channels for s in input_shape] |
|
assert len(set(in_channels)) == 1, "Each level must have the same channel!" |
|
in_channels = in_channels[0] |
|
|
|
|
|
|
|
anchor_generator = build_anchor_generator(cfg, input_shape) |
|
num_anchors = anchor_generator.num_anchors |
|
box_dim = anchor_generator.box_dim |
|
assert ( |
|
len(set(num_anchors)) == 1 |
|
), "Each level must have the same number of anchors per spatial position" |
|
return { |
|
"in_channels": in_channels, |
|
"num_anchors": num_anchors[0], |
|
"box_dim": box_dim, |
|
"conv_dims": cfg.MODEL.RPN.CONV_DIMS, |
|
} |
|
|
|
def forward(self, features: List[torch.Tensor]): |
|
""" |
|
Args: |
|
features (list[Tensor]): list of feature maps |
|
|
|
Returns: |
|
list[Tensor]: A list of L elements. |
|
Element i is a tensor of shape (N, A, Hi, Wi) representing |
|
the predicted objectness logits for all anchors. A is the number of cell anchors. |
|
list[Tensor]: A list of L elements. Element i is a tensor of shape |
|
(N, A*box_dim, Hi, Wi) representing the predicted "deltas" used to transform anchors |
|
to proposals. |
|
""" |
|
pred_objectness_logits = [] |
|
pred_anchor_deltas = [] |
|
for x in features: |
|
t = self.conv(x) |
|
pred_objectness_logits.append(self.objectness_logits(t)) |
|
pred_anchor_deltas.append(self.anchor_deltas(t)) |
|
return pred_objectness_logits, pred_anchor_deltas |
|
|
|
|
|
@PROPOSAL_GENERATOR_REGISTRY.register() |
|
class RPN(nn.Module): |
|
""" |
|
Region Proposal Network, introduced by :paper:`Faster R-CNN`. |
|
""" |
|
|
|
@configurable |
|
def __init__( |
|
self, |
|
*, |
|
in_features: List[str], |
|
head: nn.Module, |
|
anchor_generator: nn.Module, |
|
anchor_matcher: Matcher, |
|
box2box_transform: Box2BoxTransform, |
|
batch_size_per_image: int, |
|
positive_fraction: float, |
|
pre_nms_topk: Tuple[float, float], |
|
post_nms_topk: Tuple[float, float], |
|
nms_thresh: float = 0.7, |
|
min_box_size: float = 0.0, |
|
anchor_boundary_thresh: float = -1.0, |
|
loss_weight: Union[float, Dict[str, float]] = 1.0, |
|
box_reg_loss_type: str = "smooth_l1", |
|
smooth_l1_beta: float = 0.0, |
|
): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
in_features (list[str]): list of names of input features to use |
|
head (nn.Module): a module that predicts logits and regression deltas |
|
for each level from a list of per-level features |
|
anchor_generator (nn.Module): a module that creates anchors from a |
|
list of features. Usually an instance of :class:`AnchorGenerator` |
|
anchor_matcher (Matcher): label the anchors by matching them with ground truth. |
|
box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to |
|
instance boxes |
|
batch_size_per_image (int): number of anchors per image to sample for training |
|
positive_fraction (float): fraction of foreground anchors to sample for training |
|
pre_nms_topk (tuple[float]): (train, test) that represents the |
|
number of top k proposals to select before NMS, in |
|
training and testing. |
|
post_nms_topk (tuple[float]): (train, test) that represents the |
|
number of top k proposals to select after NMS, in |
|
training and testing. |
|
nms_thresh (float): NMS threshold used to de-duplicate the predicted proposals |
|
min_box_size (float): remove proposal boxes with any side smaller than this threshold, |
|
in the unit of input image pixels |
|
anchor_boundary_thresh (float): legacy option |
|
loss_weight (float|dict): weights to use for losses. Can be single float for weighting |
|
all rpn losses together, or a dict of individual weightings. Valid dict keys are: |
|
"loss_rpn_cls" - applied to classification loss |
|
"loss_rpn_loc" - applied to box regression loss |
|
box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou". |
|
smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to |
|
use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1" |
|
""" |
|
super().__init__() |
|
self.in_features = in_features |
|
self.rpn_head = head |
|
self.anchor_generator = anchor_generator |
|
self.anchor_matcher = anchor_matcher |
|
self.box2box_transform = box2box_transform |
|
self.batch_size_per_image = batch_size_per_image |
|
self.positive_fraction = positive_fraction |
|
|
|
self.pre_nms_topk = {True: pre_nms_topk[0], False: pre_nms_topk[1]} |
|
self.post_nms_topk = {True: post_nms_topk[0], False: post_nms_topk[1]} |
|
self.nms_thresh = nms_thresh |
|
self.min_box_size = float(min_box_size) |
|
self.anchor_boundary_thresh = anchor_boundary_thresh |
|
if isinstance(loss_weight, float): |
|
loss_weight = {"loss_rpn_cls": loss_weight, "loss_rpn_loc": loss_weight} |
|
self.loss_weight = loss_weight |
|
self.box_reg_loss_type = box_reg_loss_type |
|
self.smooth_l1_beta = smooth_l1_beta |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): |
|
in_features = cfg.MODEL.RPN.IN_FEATURES |
|
ret = { |
|
"in_features": in_features, |
|
"min_box_size": cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE, |
|
"nms_thresh": cfg.MODEL.RPN.NMS_THRESH, |
|
"batch_size_per_image": cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, |
|
"positive_fraction": cfg.MODEL.RPN.POSITIVE_FRACTION, |
|
"loss_weight": { |
|
"loss_rpn_cls": cfg.MODEL.RPN.LOSS_WEIGHT, |
|
"loss_rpn_loc": cfg.MODEL.RPN.BBOX_REG_LOSS_WEIGHT * cfg.MODEL.RPN.LOSS_WEIGHT, |
|
}, |
|
"anchor_boundary_thresh": cfg.MODEL.RPN.BOUNDARY_THRESH, |
|
"box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS), |
|
"box_reg_loss_type": cfg.MODEL.RPN.BBOX_REG_LOSS_TYPE, |
|
"smooth_l1_beta": cfg.MODEL.RPN.SMOOTH_L1_BETA, |
|
} |
|
|
|
ret["pre_nms_topk"] = (cfg.MODEL.RPN.PRE_NMS_TOPK_TRAIN, cfg.MODEL.RPN.PRE_NMS_TOPK_TEST) |
|
ret["post_nms_topk"] = (cfg.MODEL.RPN.POST_NMS_TOPK_TRAIN, cfg.MODEL.RPN.POST_NMS_TOPK_TEST) |
|
|
|
ret["anchor_generator"] = build_anchor_generator(cfg, [input_shape[f] for f in in_features]) |
|
ret["anchor_matcher"] = Matcher( |
|
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True |
|
) |
|
ret["head"] = build_rpn_head(cfg, [input_shape[f] for f in in_features]) |
|
return ret |
|
|
|
def _subsample_labels(self, label): |
|
""" |
|
Randomly sample a subset of positive and negative examples, and overwrite |
|
the label vector to the ignore value (-1) for all elements that are not |
|
included in the sample. |
|
|
|
Args: |
|
labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned. |
|
""" |
|
pos_idx, neg_idx = subsample_labels( |
|
label, self.batch_size_per_image, self.positive_fraction, 0 |
|
) |
|
|
|
label.fill_(-1) |
|
label.scatter_(0, pos_idx, 1) |
|
label.scatter_(0, neg_idx, 0) |
|
return label |
|
|
|
@torch.jit.unused |
|
@torch.no_grad() |
|
def label_and_sample_anchors( |
|
self, anchors: List[Boxes], gt_instances: List[Instances] |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: |
|
""" |
|
Args: |
|
anchors (list[Boxes]): anchors for each feature map. |
|
gt_instances: the ground-truth instances for each image. |
|
|
|
Returns: |
|
list[Tensor]: |
|
List of #img tensors. i-th element is a vector of labels whose length is |
|
the total number of anchors across all feature maps R = sum(Hi * Wi * A). |
|
Label values are in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative |
|
class; 1 = positive class. |
|
list[Tensor]: |
|
i-th element is a Rx4 tensor. The values are the matched gt boxes for each |
|
anchor. Values are undefined for those anchors not labeled as 1. |
|
""" |
|
anchors = Boxes.cat(anchors) |
|
|
|
gt_boxes = [x.gt_boxes for x in gt_instances] |
|
image_sizes = [x.image_size for x in gt_instances] |
|
del gt_instances |
|
|
|
gt_labels = [] |
|
matched_gt_boxes = [] |
|
for image_size_i, gt_boxes_i in zip(image_sizes, gt_boxes): |
|
""" |
|
image_size_i: (h, w) for the i-th image |
|
gt_boxes_i: ground-truth boxes for i-th image |
|
""" |
|
|
|
match_quality_matrix = retry_if_cuda_oom(pairwise_iou)(gt_boxes_i, anchors) |
|
matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix) |
|
|
|
gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device) |
|
del match_quality_matrix |
|
|
|
if self.anchor_boundary_thresh >= 0: |
|
|
|
|
|
anchors_inside_image = anchors.inside_box(image_size_i, self.anchor_boundary_thresh) |
|
gt_labels_i[~anchors_inside_image] = -1 |
|
|
|
|
|
gt_labels_i = self._subsample_labels(gt_labels_i) |
|
|
|
if len(gt_boxes_i) == 0: |
|
|
|
matched_gt_boxes_i = torch.zeros_like(anchors.tensor) |
|
else: |
|
|
|
matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor |
|
|
|
gt_labels.append(gt_labels_i) |
|
matched_gt_boxes.append(matched_gt_boxes_i) |
|
return gt_labels, matched_gt_boxes |
|
|
|
@torch.jit.unused |
|
def losses( |
|
self, |
|
anchors: List[Boxes], |
|
pred_objectness_logits: List[torch.Tensor], |
|
gt_labels: List[torch.Tensor], |
|
pred_anchor_deltas: List[torch.Tensor], |
|
gt_boxes: List[torch.Tensor], |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Return the losses from a set of RPN predictions and their associated ground-truth. |
|
|
|
Args: |
|
anchors (list[Boxes or RotatedBoxes]): anchors for each feature map, each |
|
has shape (Hi*Wi*A, B), where B is box dimension (4 or 5). |
|
pred_objectness_logits (list[Tensor]): A list of L elements. |
|
Element i is a tensor of shape (N, Hi*Wi*A) representing |
|
the predicted objectness logits for all anchors. |
|
gt_labels (list[Tensor]): Output of :meth:`label_and_sample_anchors`. |
|
pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape |
|
(N, Hi*Wi*A, 4 or 5) representing the predicted "deltas" used to transform anchors |
|
to proposals. |
|
gt_boxes (list[Tensor]): Output of :meth:`label_and_sample_anchors`. |
|
|
|
Returns: |
|
dict[loss name -> loss value]: A dict mapping from loss name to loss value. |
|
Loss names are: `loss_rpn_cls` for objectness classification and |
|
`loss_rpn_loc` for proposal localization. |
|
""" |
|
num_images = len(gt_labels) |
|
gt_labels = torch.stack(gt_labels) |
|
|
|
|
|
pos_mask = gt_labels == 1 |
|
num_pos_anchors = pos_mask.sum().item() |
|
num_neg_anchors = (gt_labels == 0).sum().item() |
|
storage = get_event_storage() |
|
storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images) |
|
storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images) |
|
|
|
localization_loss = _dense_box_regression_loss( |
|
anchors, |
|
self.box2box_transform, |
|
pred_anchor_deltas, |
|
gt_boxes, |
|
pos_mask, |
|
box_reg_loss_type=self.box_reg_loss_type, |
|
smooth_l1_beta=self.smooth_l1_beta, |
|
) |
|
|
|
valid_mask = gt_labels >= 0 |
|
objectness_loss = F.binary_cross_entropy_with_logits( |
|
cat(pred_objectness_logits, dim=1)[valid_mask], |
|
gt_labels[valid_mask].to(torch.float32), |
|
reduction="sum", |
|
) |
|
normalizer = self.batch_size_per_image * num_images |
|
losses = { |
|
"loss_rpn_cls": objectness_loss / normalizer, |
|
|
|
|
|
"loss_rpn_loc": localization_loss / normalizer, |
|
} |
|
losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()} |
|
return losses |
|
|
|
def forward( |
|
self, |
|
images: ImageList, |
|
features: Dict[str, torch.Tensor], |
|
gt_instances: Optional[List[Instances]] = None, |
|
): |
|
""" |
|
Args: |
|
images (ImageList): input images of length `N` |
|
features (dict[str, Tensor]): input data as a mapping from feature |
|
map name to tensor. Axis 0 represents the number of images `N` in |
|
the input data; axes 1-3 are channels, height, and width, which may |
|
vary between feature maps (e.g., if a feature pyramid is used). |
|
gt_instances (list[Instances], optional): a length `N` list of `Instances`s. |
|
Each `Instances` stores ground-truth instances for the corresponding image. |
|
|
|
Returns: |
|
proposals: list[Instances]: contains fields "proposal_boxes", "objectness_logits" |
|
loss: dict[Tensor] or None |
|
""" |
|
features = [features[f] for f in self.in_features] |
|
anchors = self.anchor_generator(features) |
|
|
|
pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) |
|
|
|
pred_objectness_logits = [ |
|
|
|
score.permute(0, 2, 3, 1).flatten(1) |
|
for score in pred_objectness_logits |
|
] |
|
pred_anchor_deltas = [ |
|
|
|
x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1]) |
|
.permute(0, 3, 4, 1, 2) |
|
.flatten(1, -2) |
|
for x in pred_anchor_deltas |
|
] |
|
|
|
if self.training: |
|
assert gt_instances is not None, "RPN requires gt_instances in training!" |
|
gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances) |
|
losses = self.losses( |
|
anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes |
|
) |
|
else: |
|
losses = {} |
|
proposals = self.predict_proposals( |
|
anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes |
|
) |
|
return proposals, losses |
|
|
|
def predict_proposals( |
|
self, |
|
anchors: List[Boxes], |
|
pred_objectness_logits: List[torch.Tensor], |
|
pred_anchor_deltas: List[torch.Tensor], |
|
image_sizes: List[Tuple[int, int]], |
|
): |
|
""" |
|
Decode all the predicted box regression deltas to proposals. Find the top proposals |
|
by applying NMS and removing boxes that are too small. |
|
|
|
Returns: |
|
proposals (list[Instances]): list of N Instances. The i-th Instances |
|
stores post_nms_topk object proposals for image i, sorted by their |
|
objectness score in descending order. |
|
""" |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas) |
|
return find_top_rpn_proposals( |
|
pred_proposals, |
|
pred_objectness_logits, |
|
image_sizes, |
|
self.nms_thresh, |
|
self.pre_nms_topk[self.training], |
|
self.post_nms_topk[self.training], |
|
self.min_box_size, |
|
self.training, |
|
) |
|
|
|
def _decode_proposals(self, anchors: List[Boxes], pred_anchor_deltas: List[torch.Tensor]): |
|
""" |
|
Transform anchors into proposals by applying the predicted anchor deltas. |
|
|
|
Returns: |
|
proposals (list[Tensor]): A list of L tensors. Tensor i has shape |
|
(N, Hi*Wi*A, B) |
|
""" |
|
N = pred_anchor_deltas[0].shape[0] |
|
proposals = [] |
|
|
|
for anchors_i, pred_anchor_deltas_i in zip(anchors, pred_anchor_deltas): |
|
B = anchors_i.tensor.size(1) |
|
pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B) |
|
|
|
anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B) |
|
proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i) |
|
|
|
proposals.append(proposals_i.view(N, -1, B)) |
|
return proposals |
|
|