|
|
|
import itertools |
|
import logging |
|
from typing import Dict, List |
|
import torch |
|
|
|
from detectron2.config import configurable |
|
from detectron2.layers import ShapeSpec, batched_nms_rotated, cat |
|
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated |
|
from detectron2.utils.memory import retry_if_cuda_oom |
|
|
|
from ..box_regression import Box2BoxTransformRotated |
|
from .build import PROPOSAL_GENERATOR_REGISTRY |
|
from .proposal_utils import _is_tracing |
|
from .rpn import RPN |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def find_top_rrpn_proposals( |
|
proposals, |
|
pred_objectness_logits, |
|
image_sizes, |
|
nms_thresh, |
|
pre_nms_topk, |
|
post_nms_topk, |
|
min_box_size, |
|
training, |
|
): |
|
""" |
|
For each feature map, select the `pre_nms_topk` highest scoring proposals, |
|
apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk` |
|
highest scoring proposals among all the feature maps if `training` is True, |
|
otherwise, returns the highest `post_nms_topk` scoring proposals for each |
|
feature map. |
|
|
|
Args: |
|
proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 5). |
|
All proposal predictions on the feature maps. |
|
pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A). |
|
image_sizes (list[tuple]): sizes (h, w) for each image |
|
nms_thresh (float): IoU threshold to use for NMS |
|
pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS. |
|
When RRPN is run on multiple feature maps (as in FPN) this number is per |
|
feature map. |
|
post_nms_topk (int): number of top k scoring proposals to keep after applying NMS. |
|
When RRPN is run on multiple feature maps (as in FPN) this number is total, |
|
over all feature maps. |
|
min_box_size(float): minimum proposal box side length in pixels (absolute units wrt |
|
input images). |
|
training (bool): True if proposals are to be used in training, otherwise False. |
|
This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..." |
|
comment. |
|
|
|
Returns: |
|
proposals (list[Instances]): list of N Instances. The i-th Instances |
|
stores post_nms_topk object proposals for image i. |
|
""" |
|
num_images = len(image_sizes) |
|
device = proposals[0].device |
|
|
|
|
|
topk_scores = [] |
|
topk_proposals = [] |
|
level_ids = [] |
|
batch_idx = torch.arange(num_images, device=device) |
|
for level_id, proposals_i, logits_i in zip( |
|
itertools.count(), proposals, pred_objectness_logits |
|
): |
|
Hi_Wi_A = logits_i.shape[1] |
|
if isinstance(Hi_Wi_A, torch.Tensor): |
|
num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk) |
|
else: |
|
num_proposals_i = min(Hi_Wi_A, pre_nms_topk) |
|
|
|
topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) |
|
|
|
|
|
topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] |
|
|
|
topk_proposals.append(topk_proposals_i) |
|
topk_scores.append(topk_scores_i) |
|
level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device)) |
|
|
|
|
|
topk_scores = cat(topk_scores, dim=1) |
|
topk_proposals = cat(topk_proposals, dim=1) |
|
level_ids = cat(level_ids, dim=0) |
|
|
|
|
|
results = [] |
|
for n, image_size in enumerate(image_sizes): |
|
boxes = RotatedBoxes(topk_proposals[n]) |
|
scores_per_img = topk_scores[n] |
|
lvl = level_ids |
|
|
|
valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img) |
|
if not valid_mask.all(): |
|
if training: |
|
raise FloatingPointError( |
|
"Predicted boxes or scores contain Inf/NaN. Training has diverged." |
|
) |
|
boxes = boxes[valid_mask] |
|
scores_per_img = scores_per_img[valid_mask] |
|
lvl = lvl[valid_mask] |
|
boxes.clip(image_size) |
|
|
|
|
|
keep = boxes.nonempty(threshold=min_box_size) |
|
if _is_tracing() or keep.sum().item() != len(boxes): |
|
boxes, scores_per_img, lvl = (boxes[keep], scores_per_img[keep], lvl[keep]) |
|
|
|
keep = batched_nms_rotated(boxes.tensor, scores_per_img, lvl, nms_thresh) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
keep = keep[:post_nms_topk] |
|
|
|
res = Instances(image_size) |
|
res.proposal_boxes = boxes[keep] |
|
res.objectness_logits = scores_per_img[keep] |
|
results.append(res) |
|
return results |
|
|
|
|
|
@PROPOSAL_GENERATOR_REGISTRY.register() |
|
class RRPN(RPN): |
|
""" |
|
Rotated Region Proposal Network described in :paper:`RRPN`. |
|
""" |
|
|
|
@configurable |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
if self.anchor_boundary_thresh >= 0: |
|
raise NotImplementedError( |
|
"anchor_boundary_thresh is a legacy option not implemented for RRPN." |
|
) |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]): |
|
ret = super().from_config(cfg, input_shape) |
|
ret["box2box_transform"] = Box2BoxTransformRotated(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS) |
|
return ret |
|
|
|
@torch.no_grad() |
|
def label_and_sample_anchors(self, anchors: List[RotatedBoxes], gt_instances: List[Instances]): |
|
""" |
|
Args: |
|
anchors (list[RotatedBoxes]): anchors for each feature map. |
|
gt_instances: the ground-truth instances for each image. |
|
|
|
Returns: |
|
list[Tensor]: |
|
List of #img tensors. i-th element is a vector of labels whose length is |
|
the total number of anchors across feature maps. Label values are in {-1, 0, 1}, |
|
with meanings: -1 = ignore; 0 = negative class; 1 = positive class. |
|
list[Tensor]: |
|
i-th element is a Nx5 tensor, where N is the total number of anchors across |
|
feature maps. The values are the matched gt boxes for each anchor. |
|
Values are undefined for those anchors not labeled as 1. |
|
""" |
|
anchors = RotatedBoxes.cat(anchors) |
|
|
|
gt_boxes = [x.gt_boxes for x in gt_instances] |
|
del gt_instances |
|
|
|
gt_labels = [] |
|
matched_gt_boxes = [] |
|
for gt_boxes_i in gt_boxes: |
|
""" |
|
gt_boxes_i: ground-truth boxes for i-th image |
|
""" |
|
match_quality_matrix = retry_if_cuda_oom(pairwise_iou_rotated)(gt_boxes_i, anchors) |
|
matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix) |
|
|
|
gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device) |
|
|
|
|
|
gt_labels_i = self._subsample_labels(gt_labels_i) |
|
|
|
if len(gt_boxes_i) == 0: |
|
|
|
matched_gt_boxes_i = torch.zeros_like(anchors.tensor) |
|
else: |
|
|
|
matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor |
|
|
|
gt_labels.append(gt_labels_i) |
|
matched_gt_boxes.append(matched_gt_boxes_i) |
|
return gt_labels, matched_gt_boxes |
|
|
|
@torch.no_grad() |
|
def predict_proposals(self, anchors, pred_objectness_logits, pred_anchor_deltas, image_sizes): |
|
pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas) |
|
return find_top_rrpn_proposals( |
|
pred_proposals, |
|
pred_objectness_logits, |
|
image_sizes, |
|
self.nms_thresh, |
|
self.pre_nms_topk[self.training], |
|
self.post_nms_topk[self.training], |
|
self.min_box_size, |
|
self.training, |
|
) |
|
|