|
|
|
from typing import List |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from detectron2.config import configurable |
|
from detectron2.layers import Conv2d, ConvTranspose2d, cat, interpolate |
|
from detectron2.structures import Instances, heatmaps_to_keypoints |
|
from detectron2.utils.events import get_event_storage |
|
from detectron2.utils.registry import Registry |
|
|
|
_TOTAL_SKIPPED = 0 |
|
|
|
|
|
__all__ = [ |
|
"ROI_KEYPOINT_HEAD_REGISTRY", |
|
"build_keypoint_head", |
|
"BaseKeypointRCNNHead", |
|
"KRCNNConvDeconvUpsampleHead", |
|
] |
|
|
|
|
|
ROI_KEYPOINT_HEAD_REGISTRY = Registry("ROI_KEYPOINT_HEAD") |
|
ROI_KEYPOINT_HEAD_REGISTRY.__doc__ = """ |
|
Registry for keypoint heads, which make keypoint predictions from per-region features. |
|
|
|
The registered object will be called with `obj(cfg, input_shape)`. |
|
""" |
|
|
|
|
|
def build_keypoint_head(cfg, input_shape): |
|
""" |
|
Build a keypoint head from `cfg.MODEL.ROI_KEYPOINT_HEAD.NAME`. |
|
""" |
|
name = cfg.MODEL.ROI_KEYPOINT_HEAD.NAME |
|
return ROI_KEYPOINT_HEAD_REGISTRY.get(name)(cfg, input_shape) |
|
|
|
|
|
def keypoint_rcnn_loss(pred_keypoint_logits, instances, normalizer): |
|
""" |
|
Arguments: |
|
pred_keypoint_logits (Tensor): A tensor of shape (N, K, S, S) where N is the total number |
|
of instances in the batch, K is the number of keypoints, and S is the side length |
|
of the keypoint heatmap. The values are spatial logits. |
|
instances (list[Instances]): A list of M Instances, where M is the batch size. |
|
These instances are predictions from the model |
|
that are in 1:1 correspondence with pred_keypoint_logits. |
|
Each Instances should contain a `gt_keypoints` field containing a `structures.Keypoint` |
|
instance. |
|
normalizer (float): Normalize the loss by this amount. |
|
If not specified, we normalize by the number of visible keypoints in the minibatch. |
|
|
|
Returns a scalar tensor containing the loss. |
|
""" |
|
heatmaps = [] |
|
valid = [] |
|
|
|
keypoint_side_len = pred_keypoint_logits.shape[2] |
|
for instances_per_image in instances: |
|
if len(instances_per_image) == 0: |
|
continue |
|
keypoints = instances_per_image.gt_keypoints |
|
heatmaps_per_image, valid_per_image = keypoints.to_heatmap( |
|
instances_per_image.proposal_boxes.tensor, keypoint_side_len |
|
) |
|
heatmaps.append(heatmaps_per_image.view(-1)) |
|
valid.append(valid_per_image.view(-1)) |
|
|
|
if len(heatmaps): |
|
keypoint_targets = cat(heatmaps, dim=0) |
|
valid = cat(valid, dim=0).to(dtype=torch.uint8) |
|
valid = torch.nonzero(valid).squeeze(1) |
|
|
|
|
|
|
|
if len(heatmaps) == 0 or valid.numel() == 0: |
|
global _TOTAL_SKIPPED |
|
_TOTAL_SKIPPED += 1 |
|
storage = get_event_storage() |
|
storage.put_scalar("kpts_num_skipped_batches", _TOTAL_SKIPPED, smoothing_hint=False) |
|
return pred_keypoint_logits.sum() * 0 |
|
|
|
N, K, H, W = pred_keypoint_logits.shape |
|
pred_keypoint_logits = pred_keypoint_logits.view(N * K, H * W) |
|
|
|
keypoint_loss = F.cross_entropy( |
|
pred_keypoint_logits[valid], keypoint_targets[valid], reduction="sum" |
|
) |
|
|
|
|
|
if normalizer is None: |
|
normalizer = valid.numel() |
|
keypoint_loss /= normalizer |
|
|
|
return keypoint_loss |
|
|
|
|
|
def keypoint_rcnn_inference(pred_keypoint_logits: torch.Tensor, pred_instances: List[Instances]): |
|
""" |
|
Post process each predicted keypoint heatmap in `pred_keypoint_logits` into (x, y, score) |
|
and add it to the `pred_instances` as a `pred_keypoints` field. |
|
|
|
Args: |
|
pred_keypoint_logits (Tensor): A tensor of shape (R, K, S, S) where R is the total number |
|
of instances in the batch, K is the number of keypoints, and S is the side length of |
|
the keypoint heatmap. The values are spatial logits. |
|
pred_instances (list[Instances]): A list of N Instances, where N is the number of images. |
|
|
|
Returns: |
|
None. Each element in pred_instances will contain extra "pred_keypoints" and |
|
"pred_keypoint_heatmaps" fields. "pred_keypoints" is a tensor of shape |
|
(#instance, K, 3) where the last dimension corresponds to (x, y, score). |
|
The scores are larger than 0. "pred_keypoint_heatmaps" contains the raw |
|
keypoint logits as passed to this function. |
|
""" |
|
|
|
bboxes_flat = cat([b.pred_boxes.tensor for b in pred_instances], dim=0) |
|
|
|
pred_keypoint_logits = pred_keypoint_logits.detach() |
|
keypoint_results = heatmaps_to_keypoints(pred_keypoint_logits, bboxes_flat.detach()) |
|
num_instances_per_image = [len(i) for i in pred_instances] |
|
keypoint_results = keypoint_results[:, :, [0, 1, 3]].split(num_instances_per_image, dim=0) |
|
heatmap_results = pred_keypoint_logits.split(num_instances_per_image, dim=0) |
|
|
|
for keypoint_results_per_image, heatmap_results_per_image, instances_per_image in zip( |
|
keypoint_results, heatmap_results, pred_instances |
|
): |
|
|
|
|
|
instances_per_image.pred_keypoints = keypoint_results_per_image |
|
instances_per_image.pred_keypoint_heatmaps = heatmap_results_per_image |
|
|
|
|
|
class BaseKeypointRCNNHead(nn.Module): |
|
""" |
|
Implement the basic Keypoint R-CNN losses and inference logic described in |
|
Sec. 5 of :paper:`Mask R-CNN`. |
|
""" |
|
|
|
@configurable |
|
def __init__(self, *, num_keypoints, loss_weight=1.0, loss_normalizer=1.0): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
num_keypoints (int): number of keypoints to predict |
|
loss_weight (float): weight to multiple on the keypoint loss |
|
loss_normalizer (float or str): |
|
If float, divide the loss by `loss_normalizer * #images`. |
|
If 'visible', the loss is normalized by the total number of |
|
visible keypoints across images. |
|
""" |
|
super().__init__() |
|
self.num_keypoints = num_keypoints |
|
self.loss_weight = loss_weight |
|
assert loss_normalizer == "visible" or isinstance(loss_normalizer, float), loss_normalizer |
|
self.loss_normalizer = loss_normalizer |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
ret = { |
|
"loss_weight": cfg.MODEL.ROI_KEYPOINT_HEAD.LOSS_WEIGHT, |
|
"num_keypoints": cfg.MODEL.ROI_KEYPOINT_HEAD.NUM_KEYPOINTS, |
|
} |
|
normalize_by_visible = ( |
|
cfg.MODEL.ROI_KEYPOINT_HEAD.NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS |
|
) |
|
if not normalize_by_visible: |
|
batch_size_per_image = cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE |
|
positive_sample_fraction = cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION |
|
ret["loss_normalizer"] = ( |
|
ret["num_keypoints"] * batch_size_per_image * positive_sample_fraction |
|
) |
|
else: |
|
ret["loss_normalizer"] = "visible" |
|
return ret |
|
|
|
def forward(self, x, instances: List[Instances]): |
|
""" |
|
Args: |
|
x: input 4D region feature(s) provided by :class:`ROIHeads`. |
|
instances (list[Instances]): contains the boxes & labels corresponding |
|
to the input features. |
|
Exact format is up to its caller to decide. |
|
Typically, this is the foreground instances in training, with |
|
"proposal_boxes" field and other gt annotations. |
|
In inference, it contains boxes that are already predicted. |
|
|
|
Returns: |
|
A dict of losses if in training. The predicted "instances" if in inference. |
|
""" |
|
x = self.layers(x) |
|
if self.training: |
|
num_images = len(instances) |
|
normalizer = ( |
|
None if self.loss_normalizer == "visible" else num_images * self.loss_normalizer |
|
) |
|
return { |
|
"loss_keypoint": keypoint_rcnn_loss(x, instances, normalizer=normalizer) |
|
* self.loss_weight |
|
} |
|
else: |
|
keypoint_rcnn_inference(x, instances) |
|
return instances |
|
|
|
def layers(self, x): |
|
""" |
|
Neural network layers that makes predictions from regional input features. |
|
""" |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
@ROI_KEYPOINT_HEAD_REGISTRY.register() |
|
class KRCNNConvDeconvUpsampleHead(BaseKeypointRCNNHead, nn.Sequential): |
|
""" |
|
A standard keypoint head containing a series of 3x3 convs, followed by |
|
a transpose convolution and bilinear interpolation for upsampling. |
|
It is described in Sec. 5 of :paper:`Mask R-CNN`. |
|
""" |
|
|
|
@configurable |
|
def __init__(self, input_shape, *, num_keypoints, conv_dims, **kwargs): |
|
""" |
|
NOTE: this interface is experimental. |
|
|
|
Args: |
|
input_shape (ShapeSpec): shape of the input feature |
|
conv_dims: an iterable of output channel counts for each conv in the head |
|
e.g. (512, 512, 512) for three convs outputting 512 channels. |
|
""" |
|
super().__init__(num_keypoints=num_keypoints, **kwargs) |
|
|
|
|
|
up_scale = 2.0 |
|
in_channels = input_shape.channels |
|
|
|
for idx, layer_channels in enumerate(conv_dims, 1): |
|
module = Conv2d(in_channels, layer_channels, 3, stride=1, padding=1) |
|
self.add_module("conv_fcn{}".format(idx), module) |
|
self.add_module("conv_fcn_relu{}".format(idx), nn.ReLU()) |
|
in_channels = layer_channels |
|
|
|
deconv_kernel = 4 |
|
self.score_lowres = ConvTranspose2d( |
|
in_channels, num_keypoints, deconv_kernel, stride=2, padding=deconv_kernel // 2 - 1 |
|
) |
|
self.up_scale = up_scale |
|
|
|
for name, param in self.named_parameters(): |
|
if "bias" in name: |
|
nn.init.constant_(param, 0) |
|
elif "weight" in name: |
|
|
|
|
|
nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") |
|
|
|
@classmethod |
|
def from_config(cls, cfg, input_shape): |
|
ret = super().from_config(cfg, input_shape) |
|
ret["input_shape"] = input_shape |
|
ret["conv_dims"] = cfg.MODEL.ROI_KEYPOINT_HEAD.CONV_DIMS |
|
return ret |
|
|
|
def layers(self, x): |
|
for layer in self: |
|
x = layer(x) |
|
x = interpolate(x, scale_factor=self.up_scale, mode="bilinear", align_corners=False) |
|
return x |
|
|