|
from collections import OrderedDict |
|
|
|
import torch.nn as nn |
|
|
|
from .bn import ABN, ACT_LEAKY_RELU, ACT_ELU, ACT_NONE |
|
import torch.nn.functional as functional |
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
"""Configurable residual block |
|
|
|
Parameters |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
channels : list of int |
|
Number of channels in the internal feature maps. Can either have two or three elements: if three construct |
|
a residual block with two `3 x 3` convolutions, otherwise construct a bottleneck block with `1 x 1`, then |
|
`3 x 3` then `1 x 1` convolutions. |
|
stride : int |
|
Stride of the first `3 x 3` convolution |
|
dilation : int |
|
Dilation to apply to the `3 x 3` convolutions. |
|
groups : int |
|
Number of convolution groups. This is used to create ResNeXt-style blocks and is only compatible with |
|
bottleneck blocks. |
|
norm_act : callable |
|
Function to create normalization / activation Module. |
|
dropout: callable |
|
Function to create Dropout Module. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels, |
|
channels, |
|
stride=1, |
|
dilation=1, |
|
groups=1, |
|
norm_act=ABN, |
|
dropout=None): |
|
super(ResidualBlock, self).__init__() |
|
|
|
|
|
if len(channels) != 2 and len(channels) != 3: |
|
raise ValueError("channels must contain either two or three values") |
|
if len(channels) == 2 and groups != 1: |
|
raise ValueError("groups > 1 are only valid if len(channels) == 3") |
|
|
|
is_bottleneck = len(channels) == 3 |
|
need_proj_conv = stride != 1 or in_channels != channels[-1] |
|
|
|
if not is_bottleneck: |
|
bn2 = norm_act(channels[1]) |
|
bn2.activation = ACT_NONE |
|
layers = [ |
|
("conv1", nn.Conv2d(in_channels, channels[0], 3, stride=stride, padding=dilation, bias=False, |
|
dilation=dilation)), |
|
("bn1", norm_act(channels[0])), |
|
("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, |
|
dilation=dilation)), |
|
("bn2", bn2) |
|
] |
|
if dropout is not None: |
|
layers = layers[0:2] + [("dropout", dropout())] + layers[2:] |
|
else: |
|
bn3 = norm_act(channels[2]) |
|
bn3.activation = ACT_NONE |
|
layers = [ |
|
("conv1", nn.Conv2d(in_channels, channels[0], 1, stride=1, padding=0, bias=False)), |
|
("bn1", norm_act(channels[0])), |
|
("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=stride, padding=dilation, bias=False, |
|
groups=groups, dilation=dilation)), |
|
("bn2", norm_act(channels[1])), |
|
("conv3", nn.Conv2d(channels[1], channels[2], 1, stride=1, padding=0, bias=False)), |
|
("bn3", bn3) |
|
] |
|
if dropout is not None: |
|
layers = layers[0:4] + [("dropout", dropout())] + layers[4:] |
|
self.convs = nn.Sequential(OrderedDict(layers)) |
|
|
|
if need_proj_conv: |
|
self.proj_conv = nn.Conv2d(in_channels, channels[-1], 1, stride=stride, padding=0, bias=False) |
|
self.proj_bn = norm_act(channels[-1]) |
|
self.proj_bn.activation = ACT_NONE |
|
|
|
def forward(self, x): |
|
if hasattr(self, "proj_conv"): |
|
residual = self.proj_conv(x) |
|
residual = self.proj_bn(residual) |
|
else: |
|
residual = x |
|
x = self.convs(x) + residual |
|
|
|
if self.convs.bn1.activation == ACT_LEAKY_RELU: |
|
return functional.leaky_relu(x, negative_slope=self.convs.bn1.slope, inplace=True) |
|
elif self.convs.bn1.activation == ACT_ELU: |
|
return functional.elu(x, inplace=True) |
|
else: |
|
return x |
|
|
|
|
|
class IdentityResidualBlock(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
channels, |
|
stride=1, |
|
dilation=1, |
|
groups=1, |
|
norm_act=ABN, |
|
dropout=None): |
|
"""Configurable identity-mapping residual block |
|
|
|
Parameters |
|
---------- |
|
in_channels : int |
|
Number of input channels. |
|
channels : list of int |
|
Number of channels in the internal feature maps. Can either have two or three elements: if three construct |
|
a residual block with two `3 x 3` convolutions, otherwise construct a bottleneck block with `1 x 1`, then |
|
`3 x 3` then `1 x 1` convolutions. |
|
stride : int |
|
Stride of the first `3 x 3` convolution |
|
dilation : int |
|
Dilation to apply to the `3 x 3` convolutions. |
|
groups : int |
|
Number of convolution groups. This is used to create ResNeXt-style blocks and is only compatible with |
|
bottleneck blocks. |
|
norm_act : callable |
|
Function to create normalization / activation Module. |
|
dropout: callable |
|
Function to create Dropout Module. |
|
""" |
|
super(IdentityResidualBlock, self).__init__() |
|
|
|
|
|
if len(channels) != 2 and len(channels) != 3: |
|
raise ValueError("channels must contain either two or three values") |
|
if len(channels) == 2 and groups != 1: |
|
raise ValueError("groups > 1 are only valid if len(channels) == 3") |
|
|
|
is_bottleneck = len(channels) == 3 |
|
need_proj_conv = stride != 1 or in_channels != channels[-1] |
|
|
|
self.bn1 = norm_act(in_channels) |
|
if not is_bottleneck: |
|
layers = [ |
|
("conv1", nn.Conv2d(in_channels, channels[0], 3, stride=stride, padding=dilation, bias=False, |
|
dilation=dilation)), |
|
("bn2", norm_act(channels[0])), |
|
("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, |
|
dilation=dilation)) |
|
] |
|
if dropout is not None: |
|
layers = layers[0:2] + [("dropout", dropout())] + layers[2:] |
|
else: |
|
layers = [ |
|
("conv1", nn.Conv2d(in_channels, channels[0], 1, stride=stride, padding=0, bias=False)), |
|
("bn2", norm_act(channels[0])), |
|
("conv2", nn.Conv2d(channels[0], channels[1], 3, stride=1, padding=dilation, bias=False, |
|
groups=groups, dilation=dilation)), |
|
("bn3", norm_act(channels[1])), |
|
("conv3", nn.Conv2d(channels[1], channels[2], 1, stride=1, padding=0, bias=False)) |
|
] |
|
if dropout is not None: |
|
layers = layers[0:4] + [("dropout", dropout())] + layers[4:] |
|
self.convs = nn.Sequential(OrderedDict(layers)) |
|
|
|
if need_proj_conv: |
|
self.proj_conv = nn.Conv2d(in_channels, channels[-1], 1, stride=stride, padding=0, bias=False) |
|
|
|
def forward(self, x): |
|
if hasattr(self, "proj_conv"): |
|
bn1 = self.bn1(x) |
|
shortcut = self.proj_conv(bn1) |
|
else: |
|
shortcut = x.clone() |
|
bn1 = self.bn1(x) |
|
|
|
out = self.convs(bn1) |
|
out.add_(shortcut) |
|
|
|
return out |
|
|