|
|
|
|
|
import logging |
|
import numpy as np |
|
from itertools import count |
|
import torch |
|
from caffe2.proto import caffe2_pb2 |
|
from caffe2.python import core |
|
|
|
from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format |
|
from .shared import ScopedWS, get_pb_arg_vali, get_pb_arg_vals, infer_device_type |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
class ProtobufModel(torch.nn.Module): |
|
""" |
|
Wrapper of a caffe2's protobuf model. |
|
It works just like nn.Module, but running caffe2 under the hood. |
|
Input/Output are tuple[tensor] that match the caffe2 net's external_input/output. |
|
""" |
|
|
|
_ids = count(0) |
|
|
|
def __init__(self, predict_net, init_net): |
|
logger.info(f"Initializing ProtobufModel for: {predict_net.name} ...") |
|
super().__init__() |
|
assert isinstance(predict_net, caffe2_pb2.NetDef) |
|
assert isinstance(init_net, caffe2_pb2.NetDef) |
|
|
|
self.ws_name = "__tmp_ProtobufModel_{}__".format(next(self._ids)) |
|
self.net = core.Net(predict_net) |
|
|
|
logger.info("Running init_net once to fill the parameters ...") |
|
with ScopedWS(self.ws_name, is_reset=True, is_cleanup=False) as ws: |
|
ws.RunNetOnce(init_net) |
|
uninitialized_external_input = [] |
|
for blob in self.net.Proto().external_input: |
|
if blob not in ws.Blobs(): |
|
uninitialized_external_input.append(blob) |
|
ws.CreateBlob(blob) |
|
ws.CreateNet(self.net) |
|
|
|
self._error_msgs = set() |
|
self._input_blobs = uninitialized_external_input |
|
|
|
def _infer_output_devices(self, inputs): |
|
""" |
|
Returns: |
|
list[str]: list of device for each external output |
|
""" |
|
|
|
def _get_device_type(torch_tensor): |
|
assert torch_tensor.device.type in ["cpu", "cuda"] |
|
assert torch_tensor.device.index == 0 |
|
return torch_tensor.device.type |
|
|
|
predict_net = self.net.Proto() |
|
input_device_types = { |
|
(name, 0): _get_device_type(tensor) for name, tensor in zip(self._input_blobs, inputs) |
|
} |
|
device_type_map = infer_device_type( |
|
predict_net, known_status=input_device_types, device_name_style="pytorch" |
|
) |
|
ssa, versions = core.get_ssa(predict_net) |
|
versioned_outputs = [(name, versions[name]) for name in predict_net.external_output] |
|
output_devices = [device_type_map[outp] for outp in versioned_outputs] |
|
return output_devices |
|
|
|
def forward(self, inputs): |
|
""" |
|
Args: |
|
inputs (tuple[torch.Tensor]) |
|
|
|
Returns: |
|
tuple[torch.Tensor] |
|
""" |
|
assert len(inputs) == len(self._input_blobs), ( |
|
f"Length of inputs ({len(inputs)}) " |
|
f"doesn't match the required input blobs: {self._input_blobs}" |
|
) |
|
|
|
with ScopedWS(self.ws_name, is_reset=False, is_cleanup=False) as ws: |
|
for b, tensor in zip(self._input_blobs, inputs): |
|
ws.FeedBlob(b, tensor) |
|
|
|
try: |
|
ws.RunNet(self.net.Proto().name) |
|
except RuntimeError as e: |
|
if not str(e) in self._error_msgs: |
|
self._error_msgs.add(str(e)) |
|
logger.warning("Encountered new RuntimeError: \n{}".format(str(e))) |
|
logger.warning("Catch the error and use partial results.") |
|
|
|
c2_outputs = [ws.FetchBlob(b) for b in self.net.Proto().external_output] |
|
|
|
|
|
|
|
for b in self.net.Proto().external_output: |
|
|
|
|
|
|
|
ws.FeedBlob(b, f"{b}, a C++ native class of type nullptr (uninitialized).") |
|
|
|
|
|
output_devices = ( |
|
self._infer_output_devices(inputs) |
|
if any(t.device.type != "cpu" for t in inputs) |
|
else ["cpu" for _ in self.net.Proto().external_output] |
|
) |
|
|
|
outputs = [] |
|
for name, c2_output, device in zip( |
|
self.net.Proto().external_output, c2_outputs, output_devices |
|
): |
|
if not isinstance(c2_output, np.ndarray): |
|
raise RuntimeError( |
|
"Invalid output for blob {}, received: {}".format(name, c2_output) |
|
) |
|
outputs.append(torch.tensor(c2_output).to(device=device)) |
|
return tuple(outputs) |
|
|
|
|
|
class ProtobufDetectionModel(torch.nn.Module): |
|
""" |
|
A class works just like a pytorch meta arch in terms of inference, but running |
|
caffe2 model under the hood. |
|
""" |
|
|
|
def __init__(self, predict_net, init_net, *, convert_outputs=None): |
|
""" |
|
Args: |
|
predict_net, init_net (core.Net): caffe2 nets |
|
convert_outptus (callable): a function that converts caffe2 |
|
outputs to the same format of the original pytorch model. |
|
By default, use the one defined in the caffe2 meta_arch. |
|
""" |
|
super().__init__() |
|
self.protobuf_model = ProtobufModel(predict_net, init_net) |
|
self.size_divisibility = get_pb_arg_vali(predict_net, "size_divisibility", 0) |
|
self.device = get_pb_arg_vals(predict_net, "device", b"cpu").decode("ascii") |
|
|
|
if convert_outputs is None: |
|
meta_arch = get_pb_arg_vals(predict_net, "meta_architecture", b"GeneralizedRCNN") |
|
meta_arch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[meta_arch.decode("ascii")] |
|
self._convert_outputs = meta_arch.get_outputs_converter(predict_net, init_net) |
|
else: |
|
self._convert_outputs = convert_outputs |
|
|
|
def _convert_inputs(self, batched_inputs): |
|
|
|
return convert_batched_inputs_to_c2_format( |
|
batched_inputs, self.size_divisibility, self.device |
|
) |
|
|
|
def forward(self, batched_inputs): |
|
c2_inputs = self._convert_inputs(batched_inputs) |
|
c2_results = self.protobuf_model(c2_inputs) |
|
c2_results = dict(zip(self.protobuf_model.net.Proto().external_output, c2_results)) |
|
return self._convert_outputs(batched_inputs, c2_inputs, c2_results) |
|
|