|
|
|
import math |
|
from functools import lru_cache |
|
import torch |
|
from torch import nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
from torchvision.ops import deform_conv2d |
|
|
|
from detectron2.utils.develop import create_dummy_class, create_dummy_func |
|
|
|
from .wrappers import _NewEmptyTensorOp |
|
|
|
|
|
class _DeformConv(Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
input, |
|
offset, |
|
weight, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
im2col_step=64, |
|
): |
|
if input is not None and input.dim() != 4: |
|
raise ValueError( |
|
"Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()) |
|
) |
|
ctx.stride = _pair(stride) |
|
ctx.padding = _pair(padding) |
|
ctx.dilation = _pair(dilation) |
|
ctx.groups = groups |
|
ctx.deformable_groups = deformable_groups |
|
ctx.im2col_step = im2col_step |
|
|
|
ctx.save_for_backward(input, offset, weight) |
|
|
|
output = input.new_empty( |
|
_DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride) |
|
) |
|
|
|
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] |
|
|
|
if not input.is_cuda: |
|
|
|
if deformable_groups != 1: |
|
raise NotImplementedError( |
|
"Deformable Conv with deformable_groups != 1 is not supported on CPUs!" |
|
) |
|
return deform_conv2d( |
|
input, offset, weight, stride=stride, padding=padding, dilation=dilation |
|
) |
|
else: |
|
cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) |
|
assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" |
|
|
|
_C.deform_conv_forward( |
|
input, |
|
weight, |
|
offset, |
|
output, |
|
ctx.bufs_[0], |
|
ctx.bufs_[1], |
|
weight.size(3), |
|
weight.size(2), |
|
ctx.stride[1], |
|
ctx.stride[0], |
|
ctx.padding[1], |
|
ctx.padding[0], |
|
ctx.dilation[1], |
|
ctx.dilation[0], |
|
ctx.groups, |
|
ctx.deformable_groups, |
|
cur_im2col_step, |
|
) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
input, offset, weight = ctx.saved_tensors |
|
|
|
grad_input = grad_offset = grad_weight = None |
|
|
|
if not grad_output.is_cuda: |
|
raise NotImplementedError("Deformable Conv is not supported on CPUs!") |
|
else: |
|
cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) |
|
assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" |
|
|
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: |
|
grad_input = torch.zeros_like(input) |
|
grad_offset = torch.zeros_like(offset) |
|
_C.deform_conv_backward_input( |
|
input, |
|
offset, |
|
grad_output, |
|
grad_input, |
|
grad_offset, |
|
weight, |
|
ctx.bufs_[0], |
|
weight.size(3), |
|
weight.size(2), |
|
ctx.stride[1], |
|
ctx.stride[0], |
|
ctx.padding[1], |
|
ctx.padding[0], |
|
ctx.dilation[1], |
|
ctx.dilation[0], |
|
ctx.groups, |
|
ctx.deformable_groups, |
|
cur_im2col_step, |
|
) |
|
|
|
if ctx.needs_input_grad[2]: |
|
grad_weight = torch.zeros_like(weight) |
|
_C.deform_conv_backward_filter( |
|
input, |
|
offset, |
|
grad_output, |
|
grad_weight, |
|
ctx.bufs_[0], |
|
ctx.bufs_[1], |
|
weight.size(3), |
|
weight.size(2), |
|
ctx.stride[1], |
|
ctx.stride[0], |
|
ctx.padding[1], |
|
ctx.padding[0], |
|
ctx.dilation[1], |
|
ctx.dilation[0], |
|
ctx.groups, |
|
ctx.deformable_groups, |
|
1, |
|
cur_im2col_step, |
|
) |
|
|
|
return grad_input, grad_offset, grad_weight, None, None, None, None, None, None |
|
|
|
@staticmethod |
|
def _output_size(input, weight, padding, dilation, stride): |
|
channels = weight.size(0) |
|
output_size = (input.size(0), channels) |
|
for d in range(input.dim() - 2): |
|
in_size = input.size(d + 2) |
|
pad = padding[d] |
|
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 |
|
stride_ = stride[d] |
|
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,) |
|
if not all(map(lambda s: s > 0, output_size)): |
|
raise ValueError( |
|
"convolution input is too small (output would be {})".format( |
|
"x".join(map(str, output_size)) |
|
) |
|
) |
|
return output_size |
|
|
|
@staticmethod |
|
@lru_cache(maxsize=128) |
|
def _cal_im2col_step(input_size, default_size): |
|
""" |
|
Calculate proper im2col step size, which should be divisible by input_size and not larger |
|
than prefer_size. Meanwhile the step size should be as large as possible to be more |
|
efficient. So we choose the largest one among all divisors of input_size which are smaller |
|
than prefer_size. |
|
:param input_size: input batch size . |
|
:param default_size: default preferred im2col step size. |
|
:return: the largest proper step size. |
|
""" |
|
if input_size <= default_size: |
|
return input_size |
|
best_step = 1 |
|
for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)): |
|
if input_size % step == 0: |
|
if input_size // step <= default_size: |
|
return input_size // step |
|
best_step = step |
|
|
|
return best_step |
|
|
|
|
|
class _ModulatedDeformConv(Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
input, |
|
offset, |
|
mask, |
|
weight, |
|
bias=None, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
): |
|
ctx.stride = stride |
|
ctx.padding = padding |
|
ctx.dilation = dilation |
|
ctx.groups = groups |
|
ctx.deformable_groups = deformable_groups |
|
ctx.with_bias = bias is not None |
|
if not ctx.with_bias: |
|
bias = input.new_empty(1) |
|
if not input.is_cuda: |
|
raise NotImplementedError("Deformable Conv is not supported on CPUs!") |
|
if ( |
|
weight.requires_grad |
|
or mask.requires_grad |
|
or offset.requires_grad |
|
or input.requires_grad |
|
): |
|
ctx.save_for_backward(input, offset, mask, weight, bias) |
|
output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight)) |
|
ctx._bufs = [input.new_empty(0), input.new_empty(0)] |
|
_C.modulated_deform_conv_forward( |
|
input, |
|
weight, |
|
bias, |
|
ctx._bufs[0], |
|
offset, |
|
mask, |
|
output, |
|
ctx._bufs[1], |
|
weight.shape[2], |
|
weight.shape[3], |
|
ctx.stride, |
|
ctx.stride, |
|
ctx.padding, |
|
ctx.padding, |
|
ctx.dilation, |
|
ctx.dilation, |
|
ctx.groups, |
|
ctx.deformable_groups, |
|
ctx.with_bias, |
|
) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
if not grad_output.is_cuda: |
|
raise NotImplementedError("Deformable Conv is not supported on CPUs!") |
|
input, offset, mask, weight, bias = ctx.saved_tensors |
|
grad_input = torch.zeros_like(input) |
|
grad_offset = torch.zeros_like(offset) |
|
grad_mask = torch.zeros_like(mask) |
|
grad_weight = torch.zeros_like(weight) |
|
grad_bias = torch.zeros_like(bias) |
|
_C.modulated_deform_conv_backward( |
|
input, |
|
weight, |
|
bias, |
|
ctx._bufs[0], |
|
offset, |
|
mask, |
|
ctx._bufs[1], |
|
grad_input, |
|
grad_weight, |
|
grad_bias, |
|
grad_offset, |
|
grad_mask, |
|
grad_output, |
|
weight.shape[2], |
|
weight.shape[3], |
|
ctx.stride, |
|
ctx.stride, |
|
ctx.padding, |
|
ctx.padding, |
|
ctx.dilation, |
|
ctx.dilation, |
|
ctx.groups, |
|
ctx.deformable_groups, |
|
ctx.with_bias, |
|
) |
|
if not ctx.with_bias: |
|
grad_bias = None |
|
|
|
return ( |
|
grad_input, |
|
grad_offset, |
|
grad_mask, |
|
grad_weight, |
|
grad_bias, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
@staticmethod |
|
def _infer_shape(ctx, input, weight): |
|
n = input.size(0) |
|
channels_out = weight.size(0) |
|
height, width = input.shape[2:4] |
|
kernel_h, kernel_w = weight.shape[2:4] |
|
height_out = ( |
|
height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1) |
|
) // ctx.stride + 1 |
|
width_out = ( |
|
width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1) |
|
) // ctx.stride + 1 |
|
return n, channels_out, height_out, width_out |
|
|
|
|
|
deform_conv = _DeformConv.apply |
|
modulated_deform_conv = _ModulatedDeformConv.apply |
|
|
|
|
|
class DeformConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
bias=False, |
|
norm=None, |
|
activation=None, |
|
): |
|
""" |
|
Deformable convolution from :paper:`deformconv`. |
|
|
|
Arguments are similar to :class:`Conv2D`. Extra arguments: |
|
|
|
Args: |
|
deformable_groups (int): number of groups used in deformable convolution. |
|
norm (nn.Module, optional): a normalization layer |
|
activation (callable(Tensor) -> Tensor): a callable activation function |
|
""" |
|
super(DeformConv, self).__init__() |
|
|
|
assert not bias |
|
assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format( |
|
in_channels, groups |
|
) |
|
assert ( |
|
out_channels % groups == 0 |
|
), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups) |
|
|
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.stride = _pair(stride) |
|
self.padding = _pair(padding) |
|
self.dilation = _pair(dilation) |
|
self.groups = groups |
|
self.deformable_groups = deformable_groups |
|
self.norm = norm |
|
self.activation = activation |
|
|
|
self.weight = nn.Parameter( |
|
torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size) |
|
) |
|
self.bias = None |
|
|
|
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") |
|
|
|
def forward(self, x, offset): |
|
if x.numel() == 0: |
|
|
|
|
|
|
|
|
|
output_shape = [ |
|
(i + 2 * p - (di * (k - 1) + 1)) // s + 1 |
|
for i, p, di, k, s in zip( |
|
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride |
|
) |
|
] |
|
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|
|
x = deform_conv( |
|
x, |
|
offset, |
|
self.weight, |
|
self.stride, |
|
self.padding, |
|
self.dilation, |
|
self.groups, |
|
self.deformable_groups, |
|
) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
if self.activation is not None: |
|
x = self.activation(x) |
|
return x |
|
|
|
def extra_repr(self): |
|
tmpstr = "in_channels=" + str(self.in_channels) |
|
tmpstr += ", out_channels=" + str(self.out_channels) |
|
tmpstr += ", kernel_size=" + str(self.kernel_size) |
|
tmpstr += ", stride=" + str(self.stride) |
|
tmpstr += ", padding=" + str(self.padding) |
|
tmpstr += ", dilation=" + str(self.dilation) |
|
tmpstr += ", groups=" + str(self.groups) |
|
tmpstr += ", deformable_groups=" + str(self.deformable_groups) |
|
tmpstr += ", bias=False" |
|
return tmpstr |
|
|
|
|
|
class ModulatedDeformConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
deformable_groups=1, |
|
bias=True, |
|
norm=None, |
|
activation=None, |
|
): |
|
""" |
|
Modulated deformable convolution from :paper:`deformconv2`. |
|
|
|
Arguments are similar to :class:`Conv2D`. Extra arguments: |
|
|
|
Args: |
|
deformable_groups (int): number of groups used in deformable convolution. |
|
norm (nn.Module, optional): a normalization layer |
|
activation (callable(Tensor) -> Tensor): a callable activation function |
|
""" |
|
super(ModulatedDeformConv, self).__init__() |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.kernel_size = _pair(kernel_size) |
|
self.stride = stride |
|
self.padding = padding |
|
self.dilation = dilation |
|
self.groups = groups |
|
self.deformable_groups = deformable_groups |
|
self.with_bias = bias |
|
self.norm = norm |
|
self.activation = activation |
|
|
|
self.weight = nn.Parameter( |
|
torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) |
|
) |
|
if bias: |
|
self.bias = nn.Parameter(torch.Tensor(out_channels)) |
|
else: |
|
self.bias = None |
|
|
|
nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") |
|
if self.bias is not None: |
|
nn.init.constant_(self.bias, 0) |
|
|
|
def forward(self, x, offset, mask): |
|
if x.numel() == 0: |
|
output_shape = [ |
|
(i + 2 * p - (di * (k - 1) + 1)) // s + 1 |
|
for i, p, di, k, s in zip( |
|
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride |
|
) |
|
] |
|
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape |
|
return _NewEmptyTensorOp.apply(x, output_shape) |
|
|
|
x = modulated_deform_conv( |
|
x, |
|
offset, |
|
mask, |
|
self.weight, |
|
self.bias, |
|
self.stride, |
|
self.padding, |
|
self.dilation, |
|
self.groups, |
|
self.deformable_groups, |
|
) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
if self.activation is not None: |
|
x = self.activation(x) |
|
return x |
|
|
|
def extra_repr(self): |
|
tmpstr = "in_channels=" + str(self.in_channels) |
|
tmpstr += ", out_channels=" + str(self.out_channels) |
|
tmpstr += ", kernel_size=" + str(self.kernel_size) |
|
tmpstr += ", stride=" + str(self.stride) |
|
tmpstr += ", padding=" + str(self.padding) |
|
tmpstr += ", dilation=" + str(self.dilation) |
|
tmpstr += ", groups=" + str(self.groups) |
|
tmpstr += ", deformable_groups=" + str(self.deformable_groups) |
|
tmpstr += ", bias=" + str(self.with_bias) |
|
return tmpstr |
|
|
|
|
|
try: |
|
from detectron2 import _C |
|
except ImportError: |
|
|
|
_msg = "detectron2 is not compiled successfully, please build following the instructions!" |
|
_args = ("detectron2._C", _msg) |
|
DeformConv = create_dummy_class("DeformConv", *_args) |
|
ModulatedDeformConv = create_dummy_class("ModulatedDeformConv", *_args) |
|
deform_conv = create_dummy_func("deform_conv", *_args) |
|
modulated_deform_conv = create_dummy_func("modulated_deform_conv", *_args) |
|
|