|
|
|
import torch |
|
from torch import nn |
|
from torch.autograd import Function |
|
from torch.autograd.function import once_differentiable |
|
from torch.nn.modules.utils import _pair |
|
|
|
|
|
class _ROIAlignRotated(Function): |
|
@staticmethod |
|
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio): |
|
ctx.save_for_backward(roi) |
|
ctx.output_size = _pair(output_size) |
|
ctx.spatial_scale = spatial_scale |
|
ctx.sampling_ratio = sampling_ratio |
|
ctx.input_shape = input.size() |
|
output = torch.ops.detectron2.roi_align_rotated_forward( |
|
input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio |
|
) |
|
return output |
|
|
|
@staticmethod |
|
@once_differentiable |
|
def backward(ctx, grad_output): |
|
(rois,) = ctx.saved_tensors |
|
output_size = ctx.output_size |
|
spatial_scale = ctx.spatial_scale |
|
sampling_ratio = ctx.sampling_ratio |
|
bs, ch, h, w = ctx.input_shape |
|
grad_input = torch.ops.detectron2.roi_align_rotated_backward( |
|
grad_output, |
|
rois, |
|
spatial_scale, |
|
output_size[0], |
|
output_size[1], |
|
bs, |
|
ch, |
|
h, |
|
w, |
|
sampling_ratio, |
|
) |
|
return grad_input, None, None, None, None, None |
|
|
|
|
|
roi_align_rotated = _ROIAlignRotated.apply |
|
|
|
|
|
class ROIAlignRotated(nn.Module): |
|
def __init__(self, output_size, spatial_scale, sampling_ratio): |
|
""" |
|
Args: |
|
output_size (tuple): h, w |
|
spatial_scale (float): scale the input boxes by this number |
|
sampling_ratio (int): number of inputs samples to take for each output |
|
sample. 0 to take samples densely. |
|
|
|
Note: |
|
ROIAlignRotated supports continuous coordinate by default: |
|
Given a continuous coordinate c, its two neighboring pixel indices (in our |
|
pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, |
|
c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled |
|
from the underlying signal at continuous coordinates 0.5 and 1.5). |
|
""" |
|
super(ROIAlignRotated, self).__init__() |
|
self.output_size = output_size |
|
self.spatial_scale = spatial_scale |
|
self.sampling_ratio = sampling_ratio |
|
|
|
def forward(self, input, rois): |
|
""" |
|
Args: |
|
input: NCHW images |
|
rois: Bx6 boxes. First column is the index into N. |
|
The other 5 columns are (x_ctr, y_ctr, width, height, angle_degrees). |
|
""" |
|
assert rois.dim() == 2 and rois.size(1) == 6 |
|
orig_dtype = input.dtype |
|
if orig_dtype == torch.float16: |
|
input = input.float() |
|
rois = rois.float() |
|
output_size = _pair(self.output_size) |
|
|
|
|
|
|
|
if torch.jit.is_scripting() or torch.jit.is_tracing(): |
|
return torch.ops.detectron2.roi_align_rotated_forward( |
|
input, rois, self.spatial_scale, output_size[0], output_size[1], self.sampling_ratio |
|
).to(dtype=orig_dtype) |
|
|
|
return roi_align_rotated( |
|
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio |
|
).to(dtype=orig_dtype) |
|
|
|
def __repr__(self): |
|
tmpstr = self.__class__.__name__ + "(" |
|
tmpstr += "output_size=" + str(self.output_size) |
|
tmpstr += ", spatial_scale=" + str(self.spatial_scale) |
|
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) |
|
tmpstr += ")" |
|
return tmpstr |
|
|