|
|
|
|
|
import copy |
|
import io |
|
import logging |
|
import numpy as np |
|
from typing import List |
|
import onnx |
|
import onnx.optimizer |
|
import torch |
|
from caffe2.proto import caffe2_pb2 |
|
from caffe2.python import core |
|
from caffe2.python.onnx.backend import Caffe2Backend |
|
from tabulate import tabulate |
|
from termcolor import colored |
|
from torch.onnx import OperatorExportTypes |
|
|
|
from .shared import ( |
|
ScopedWS, |
|
construct_init_net_from_params, |
|
fuse_alias_placeholder, |
|
fuse_copy_between_cpu_and_gpu, |
|
get_params_from_init_net, |
|
group_norm_replace_aten_with_caffe2, |
|
infer_device_type, |
|
remove_dead_end_ops, |
|
remove_reshape_for_fc, |
|
save_graph, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def export_onnx_model(model, inputs): |
|
""" |
|
Trace and export a model to onnx format. |
|
|
|
Args: |
|
model (nn.Module): |
|
inputs (tuple[args]): the model will be called by `model(*inputs)` |
|
|
|
Returns: |
|
an onnx model |
|
""" |
|
assert isinstance(model, torch.nn.Module) |
|
|
|
|
|
|
|
def _check_eval(module): |
|
assert not module.training |
|
|
|
model.apply(_check_eval) |
|
|
|
|
|
with torch.no_grad(): |
|
with io.BytesIO() as f: |
|
torch.onnx.export( |
|
model, |
|
inputs, |
|
f, |
|
operator_export_type=OperatorExportTypes.ONNX_ATEN_FALLBACK, |
|
|
|
|
|
) |
|
onnx_model = onnx.load_from_string(f.getvalue()) |
|
|
|
return onnx_model |
|
|
|
|
|
def _op_stats(net_def): |
|
type_count = {} |
|
for t in [op.type for op in net_def.op]: |
|
type_count[t] = type_count.get(t, 0) + 1 |
|
type_count_list = sorted(type_count.items(), key=lambda kv: kv[0]) |
|
type_count_list = sorted(type_count_list, key=lambda kv: -kv[1]) |
|
return "\n".join("{:>4}x {}".format(count, name) for name, count in type_count_list) |
|
|
|
|
|
def _assign_device_option( |
|
predict_net: caffe2_pb2.NetDef, init_net: caffe2_pb2.NetDef, tensor_inputs: List[torch.Tensor] |
|
): |
|
""" |
|
ONNX exported network doesn't have concept of device, assign necessary |
|
device option for each op in order to make it runable on GPU runtime. |
|
""" |
|
|
|
def _get_device_type(torch_tensor): |
|
assert torch_tensor.device.type in ["cpu", "cuda"] |
|
assert torch_tensor.device.index == 0 |
|
return torch_tensor.device.type |
|
|
|
def _assign_op_device_option(net_proto, net_ssa, blob_device_types): |
|
for op, ssa_i in zip(net_proto.op, net_ssa): |
|
if op.type in ["CopyCPUToGPU", "CopyGPUToCPU"]: |
|
op.device_option.CopyFrom(core.DeviceOption(caffe2_pb2.CUDA, 0)) |
|
else: |
|
devices = [blob_device_types[b] for b in ssa_i[0] + ssa_i[1]] |
|
assert all(d == devices[0] for d in devices) |
|
if devices[0] == "cuda": |
|
op.device_option.CopyFrom(core.DeviceOption(caffe2_pb2.CUDA, 0)) |
|
|
|
|
|
predict_net_input_device_types = { |
|
(name, 0): _get_device_type(tensor) |
|
for name, tensor in zip(predict_net.external_input, tensor_inputs) |
|
} |
|
predict_net_device_types = infer_device_type( |
|
predict_net, known_status=predict_net_input_device_types, device_name_style="pytorch" |
|
) |
|
predict_net_ssa, _ = core.get_ssa(predict_net) |
|
_assign_op_device_option(predict_net, predict_net_ssa, predict_net_device_types) |
|
|
|
|
|
init_net_ssa, versions = core.get_ssa(init_net) |
|
init_net_output_device_types = { |
|
(name, versions[name]): predict_net_device_types[(name, 0)] |
|
for name in init_net.external_output |
|
} |
|
init_net_device_types = infer_device_type( |
|
init_net, known_status=init_net_output_device_types, device_name_style="pytorch" |
|
) |
|
_assign_op_device_option(init_net, init_net_ssa, init_net_device_types) |
|
|
|
|
|
def export_caffe2_detection_model(model: torch.nn.Module, tensor_inputs: List[torch.Tensor]): |
|
""" |
|
Export a caffe2-compatible Detectron2 model to caffe2 format via ONNX. |
|
|
|
Arg: |
|
model: a caffe2-compatible version of detectron2 model, defined in caffe2_modeling.py |
|
tensor_inputs: a list of tensors that caffe2 model takes as input. |
|
""" |
|
model = copy.deepcopy(model) |
|
assert isinstance(model, torch.nn.Module) |
|
assert hasattr(model, "encode_additional_info") |
|
|
|
|
|
logger.info( |
|
"Exporting a {} model via ONNX ...".format(type(model).__name__) |
|
+ " Some warnings from ONNX are expected and are usually not to worry about." |
|
) |
|
onnx_model = export_onnx_model(model, (tensor_inputs,)) |
|
|
|
init_net, predict_net = Caffe2Backend.onnx_graph_to_caffe2_net(onnx_model) |
|
ops_table = [[op.type, op.input, op.output] for op in predict_net.op] |
|
table = tabulate(ops_table, headers=["type", "input", "output"], tablefmt="pipe") |
|
logger.info( |
|
"ONNX export Done. Exported predict_net (before optimizations):\n" + colored(table, "cyan") |
|
) |
|
|
|
|
|
fuse_alias_placeholder(predict_net, init_net) |
|
if any(t.device.type != "cpu" for t in tensor_inputs): |
|
fuse_copy_between_cpu_and_gpu(predict_net) |
|
remove_dead_end_ops(init_net) |
|
_assign_device_option(predict_net, init_net, tensor_inputs) |
|
params, device_options = get_params_from_init_net(init_net) |
|
predict_net, params = remove_reshape_for_fc(predict_net, params) |
|
init_net = construct_init_net_from_params(params, device_options) |
|
group_norm_replace_aten_with_caffe2(predict_net) |
|
|
|
|
|
model.encode_additional_info(predict_net, init_net) |
|
|
|
logger.info("Operators used in predict_net: \n{}".format(_op_stats(predict_net))) |
|
logger.info("Operators used in init_net: \n{}".format(_op_stats(init_net))) |
|
|
|
return predict_net, init_net |
|
|
|
|
|
def run_and_save_graph(predict_net, init_net, tensor_inputs, graph_save_path): |
|
""" |
|
Run the caffe2 model on given inputs, recording the shape and draw the graph. |
|
|
|
predict_net/init_net: caffe2 model. |
|
tensor_inputs: a list of tensors that caffe2 model takes as input. |
|
graph_save_path: path for saving graph of exported model. |
|
""" |
|
|
|
logger.info("Saving graph of ONNX exported model to {} ...".format(graph_save_path)) |
|
save_graph(predict_net, graph_save_path, op_only=False) |
|
|
|
|
|
logger.info("Running ONNX exported model ...") |
|
with ScopedWS("__ws_tmp__", True) as ws: |
|
ws.RunNetOnce(init_net) |
|
initialized_blobs = set(ws.Blobs()) |
|
uninitialized = [inp for inp in predict_net.external_input if inp not in initialized_blobs] |
|
for name, blob in zip(uninitialized, tensor_inputs): |
|
ws.FeedBlob(name, blob) |
|
|
|
try: |
|
ws.RunNetOnce(predict_net) |
|
except RuntimeError as e: |
|
logger.warning("Encountered RuntimeError: \n{}".format(str(e))) |
|
|
|
ws_blobs = {b: ws.FetchBlob(b) for b in ws.Blobs()} |
|
blob_sizes = {b: ws_blobs[b].shape for b in ws_blobs if isinstance(ws_blobs[b], np.ndarray)} |
|
|
|
logger.info("Saving graph with blob shapes to {} ...".format(graph_save_path)) |
|
save_graph(predict_net, graph_save_path, op_only=False, blob_sizes=blob_sizes) |
|
|
|
return ws_blobs |
|
|