|
import pdb |
|
from pathlib import Path |
|
import sys |
|
|
|
PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() |
|
sys.path.insert(0, str(PROJECT_ROOT)) |
|
import os |
|
import torch |
|
import numpy as np |
|
import cv2 |
|
import torchvision.transforms as transforms |
|
from torch.utils.data import DataLoader |
|
from datasets.simple_extractor_dataset import SimpleFolderDataset |
|
from utils.transforms import transform_logits |
|
from tqdm import tqdm |
|
from PIL import Image |
|
|
|
|
|
def get_palette(num_cls): |
|
""" Returns the color map for visualizing the segmentation mask. |
|
Args: |
|
num_cls: Number of classes |
|
Returns: |
|
The color map |
|
""" |
|
n = num_cls |
|
palette = [0] * (n * 3) |
|
for j in range(0, n): |
|
lab = j |
|
palette[j * 3 + 0] = 0 |
|
palette[j * 3 + 1] = 0 |
|
palette[j * 3 + 2] = 0 |
|
i = 0 |
|
while lab: |
|
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) |
|
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) |
|
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) |
|
i += 1 |
|
lab >>= 3 |
|
return palette |
|
|
|
|
|
def delete_irregular(logits_result): |
|
parsing_result = np.argmax(logits_result, axis=2) |
|
upper_cloth = np.where(parsing_result == 4, 255, 0) |
|
contours, hierarchy = cv2.findContours(upper_cloth.astype(np.uint8), |
|
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) |
|
area = [] |
|
for i in range(len(contours)): |
|
a = cv2.contourArea(contours[i], True) |
|
area.append(abs(a)) |
|
if len(area) != 0: |
|
top = area.index(max(area)) |
|
M = cv2.moments(contours[top]) |
|
cY = int(M["m01"] / M["m00"]) |
|
|
|
dresses = np.where(parsing_result == 7, 255, 0) |
|
contours_dress, hierarchy_dress = cv2.findContours(dresses.astype(np.uint8), |
|
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) |
|
area_dress = [] |
|
for j in range(len(contours_dress)): |
|
a_d = cv2.contourArea(contours_dress[j], True) |
|
area_dress.append(abs(a_d)) |
|
if len(area_dress) != 0: |
|
top_dress = area_dress.index(max(area_dress)) |
|
M_dress = cv2.moments(contours_dress[top_dress]) |
|
cY_dress = int(M_dress["m01"] / M_dress["m00"]) |
|
wear_type = "dresses" |
|
if len(area) != 0: |
|
if len(area_dress) != 0 and cY_dress > cY: |
|
irregular_list = np.array([4, 5, 6]) |
|
logits_result[:, :, irregular_list] = -1 |
|
else: |
|
irregular_list = np.array([5, 6, 7, 8, 9, 10, 12, 13]) |
|
logits_result[:cY, :, irregular_list] = -1 |
|
wear_type = "cloth_pant" |
|
parsing_result = np.argmax(logits_result, axis=2) |
|
|
|
parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0) |
|
return parsing_result, wear_type |
|
|
|
|
|
|
|
def hole_fill(img): |
|
img_copy = img.copy() |
|
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8) |
|
cv2.floodFill(img, mask, (0, 0), 255) |
|
img_inverse = cv2.bitwise_not(img) |
|
dst = cv2.bitwise_or(img_copy, img_inverse) |
|
return dst |
|
|
|
def refine_mask(mask): |
|
contours, hierarchy = cv2.findContours(mask.astype(np.uint8), |
|
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) |
|
area = [] |
|
for j in range(len(contours)): |
|
a_d = cv2.contourArea(contours[j], True) |
|
area.append(abs(a_d)) |
|
refine_mask = np.zeros_like(mask).astype(np.uint8) |
|
if len(area) != 0: |
|
i = area.index(max(area)) |
|
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1) |
|
|
|
for j in range(len(area)): |
|
if j != i and area[i] > 2000: |
|
cv2.drawContours(refine_mask, contours, j, color=255, thickness=-1) |
|
return refine_mask |
|
|
|
def refine_hole(parsing_result_filled, parsing_result, arm_mask): |
|
filled_hole = cv2.bitwise_and(np.where(parsing_result_filled == 4, 255, 0), |
|
np.where(parsing_result != 4, 255, 0)) - arm_mask * 255 |
|
contours, hierarchy = cv2.findContours(filled_hole, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1) |
|
refine_hole_mask = np.zeros_like(parsing_result).astype(np.uint8) |
|
for i in range(len(contours)): |
|
a = cv2.contourArea(contours[i], True) |
|
|
|
if abs(a) > 2000: |
|
cv2.drawContours(refine_hole_mask, contours, i, color=255, thickness=-1) |
|
return refine_hole_mask + arm_mask |
|
|
|
def onnx_inference(session, lip_session, input_dir): |
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) |
|
]) |
|
dataset = SimpleFolderDataset(root=input_dir, input_size=[512, 512], transform=transform) |
|
dataloader = DataLoader(dataset) |
|
with torch.no_grad(): |
|
for _, batch in enumerate(tqdm(dataloader)): |
|
image, meta = batch |
|
c = meta['center'].numpy()[0] |
|
s = meta['scale'].numpy()[0] |
|
w = meta['width'].numpy()[0] |
|
h = meta['height'].numpy()[0] |
|
output = session.run(None, {"input.1": image.numpy().astype(np.float32)}) |
|
upsample = torch.nn.Upsample(size=[512, 512], mode='bilinear', align_corners=True) |
|
upsample_output = upsample(torch.from_numpy(output[1][0]).unsqueeze(0)) |
|
upsample_output = upsample_output.squeeze() |
|
upsample_output = upsample_output.permute(1, 2, 0) |
|
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=[512, 512]) |
|
parsing_result = np.argmax(logits_result, axis=2) |
|
parsing_result = np.pad(parsing_result, pad_width=1, mode='constant', constant_values=0) |
|
|
|
arm_mask = (parsing_result == 14).astype(np.float32) \ |
|
+ (parsing_result == 15).astype(np.float32) |
|
upper_cloth_mask = (parsing_result == 4).astype(np.float32) + arm_mask |
|
img = np.where(upper_cloth_mask, 255, 0) |
|
dst = hole_fill(img.astype(np.uint8)) |
|
parsing_result_filled = dst / 255 * 4 |
|
parsing_result_woarm = np.where(parsing_result_filled == 4, parsing_result_filled, parsing_result) |
|
|
|
refine_hole_mask = refine_hole(parsing_result_filled.astype(np.uint8), parsing_result.astype(np.uint8), |
|
arm_mask.astype(np.uint8)) |
|
parsing_result = np.where(refine_hole_mask, parsing_result, parsing_result_woarm) |
|
|
|
parsing_result = parsing_result[1:-1, 1:-1] |
|
|
|
dataset_lip = SimpleFolderDataset(root=input_dir, input_size=[473, 473], transform=transform) |
|
dataloader_lip = DataLoader(dataset_lip) |
|
with torch.no_grad(): |
|
for _, batch in enumerate(tqdm(dataloader_lip)): |
|
image, meta = batch |
|
c = meta['center'].numpy()[0] |
|
s = meta['scale'].numpy()[0] |
|
w = meta['width'].numpy()[0] |
|
h = meta['height'].numpy()[0] |
|
|
|
output_lip = lip_session.run(None, {"input.1": image.numpy().astype(np.float32)}) |
|
upsample = torch.nn.Upsample(size=[473, 473], mode='bilinear', align_corners=True) |
|
upsample_output_lip = upsample(torch.from_numpy(output_lip[1][0]).unsqueeze(0)) |
|
upsample_output_lip = upsample_output_lip.squeeze() |
|
upsample_output_lip = upsample_output_lip.permute(1, 2, 0) |
|
logits_result_lip = transform_logits(upsample_output_lip.data.cpu().numpy(), c, s, w, h, |
|
input_size=[473, 473]) |
|
parsing_result_lip = np.argmax(logits_result_lip, axis=2) |
|
|
|
neck_mask = np.logical_and(np.logical_not((parsing_result_lip == 13).astype(np.float32)), |
|
(parsing_result == 11).astype(np.float32)) |
|
parsing_result = np.where(neck_mask, 18, parsing_result) |
|
palette = get_palette(19) |
|
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) |
|
output_img.putpalette(palette) |
|
face_mask = torch.from_numpy((parsing_result == 11).astype(np.float32)) |
|
|
|
return output_img, face_mask |
|
|
|
|
|
|
|
|