|
|
|
|
|
from abc import ABC, abstractmethod |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.structures import BoxMode, Instances |
|
|
|
from densepose import DensePoseDataRelative |
|
|
|
LossDict = Dict[str, torch.Tensor] |
|
|
|
|
|
def _linear_interpolation_utilities(v_norm, v0_src, size_src, v0_dst, size_dst, size_z): |
|
""" |
|
Computes utility values for linear interpolation at points v. |
|
The points are given as normalized offsets in the source interval |
|
(v0_src, v0_src + size_src), more precisely: |
|
v = v0_src + v_norm * size_src / 256.0 |
|
The computed utilities include lower points v_lo, upper points v_hi, |
|
interpolation weights v_w and flags j_valid indicating whether the |
|
points falls into the destination interval (v0_dst, v0_dst + size_dst). |
|
|
|
Args: |
|
v_norm (:obj: `torch.Tensor`): tensor of size N containing |
|
normalized point offsets |
|
v0_src (:obj: `torch.Tensor`): tensor of size N containing |
|
left bounds of source intervals for normalized points |
|
size_src (:obj: `torch.Tensor`): tensor of size N containing |
|
source interval sizes for normalized points |
|
v0_dst (:obj: `torch.Tensor`): tensor of size N containing |
|
left bounds of destination intervals |
|
size_dst (:obj: `torch.Tensor`): tensor of size N containing |
|
destination interval sizes |
|
size_z (int): interval size for data to be interpolated |
|
|
|
Returns: |
|
v_lo (:obj: `torch.Tensor`): int tensor of size N containing |
|
indices of lower values used for interpolation, all values are |
|
integers from [0, size_z - 1] |
|
v_hi (:obj: `torch.Tensor`): int tensor of size N containing |
|
indices of upper values used for interpolation, all values are |
|
integers from [0, size_z - 1] |
|
v_w (:obj: `torch.Tensor`): float tensor of size N containing |
|
interpolation weights |
|
j_valid (:obj: `torch.Tensor`): uint8 tensor of size N containing |
|
0 for points outside the estimation interval |
|
(v0_est, v0_est + size_est) and 1 otherwise |
|
""" |
|
v = v0_src + v_norm * size_src / 256.0 |
|
j_valid = (v - v0_dst >= 0) * (v - v0_dst < size_dst) |
|
v_grid = (v - v0_dst) * size_z / size_dst |
|
v_lo = v_grid.floor().long().clamp(min=0, max=size_z - 1) |
|
v_hi = (v_lo + 1).clamp(max=size_z - 1) |
|
v_grid = torch.min(v_hi.float(), v_grid) |
|
v_w = v_grid - v_lo.float() |
|
return v_lo, v_hi, v_w, j_valid |
|
|
|
|
|
class BilinearInterpolationHelper: |
|
""" |
|
Args: |
|
packed_annotations: object that contains packed annotations |
|
j_valid (:obj: `torch.Tensor`): uint8 tensor of size M containing |
|
0 for points to be discarded and 1 for points to be selected |
|
y_lo (:obj: `torch.Tensor`): int tensor of indices of upper values |
|
in z_est for each point |
|
y_hi (:obj: `torch.Tensor`): int tensor of indices of lower values |
|
in z_est for each point |
|
x_lo (:obj: `torch.Tensor`): int tensor of indices of left values |
|
in z_est for each point |
|
x_hi (:obj: `torch.Tensor`): int tensor of indices of right values |
|
in z_est for each point |
|
w_ylo_xlo (:obj: `torch.Tensor`): float tensor of size M; |
|
contains upper-left value weight for each point |
|
w_ylo_xhi (:obj: `torch.Tensor`): float tensor of size M; |
|
contains upper-right value weight for each point |
|
w_yhi_xlo (:obj: `torch.Tensor`): float tensor of size M; |
|
contains lower-left value weight for each point |
|
w_yhi_xhi (:obj: `torch.Tensor`): float tensor of size M; |
|
contains lower-right value weight for each point |
|
""" |
|
|
|
def __init__( |
|
self, |
|
packed_annotations: Any, |
|
j_valid: torch.Tensor, |
|
y_lo: torch.Tensor, |
|
y_hi: torch.Tensor, |
|
x_lo: torch.Tensor, |
|
x_hi: torch.Tensor, |
|
w_ylo_xlo: torch.Tensor, |
|
w_ylo_xhi: torch.Tensor, |
|
w_yhi_xlo: torch.Tensor, |
|
w_yhi_xhi: torch.Tensor, |
|
): |
|
for k, v in locals().items(): |
|
if k != "self": |
|
setattr(self, k, v) |
|
|
|
@staticmethod |
|
def from_matches( |
|
packed_annotations: Any, densepose_outputs_size_hw: Tuple[int, int] |
|
) -> "BilinearInterpolationHelper": |
|
""" |
|
Args: |
|
packed_annotations: annotations packed into tensors, the following |
|
attributes are required: |
|
- bbox_xywh_gt |
|
- bbox_xywh_est |
|
- x_gt |
|
- y_gt |
|
- point_bbox_with_dp_indices |
|
- point_bbox_indices |
|
densepose_outputs_size_hw (tuple [int, int]): resolution of |
|
DensePose predictor outputs (H, W) |
|
Return: |
|
An instance of `BilinearInterpolationHelper` used to perform |
|
interpolation for the given annotation points and output resolution |
|
""" |
|
|
|
zh, zw = densepose_outputs_size_hw |
|
x0_gt, y0_gt, w_gt, h_gt = packed_annotations.bbox_xywh_gt[ |
|
packed_annotations.point_bbox_with_dp_indices |
|
].unbind(dim=1) |
|
x0_est, y0_est, w_est, h_est = packed_annotations.bbox_xywh_est[ |
|
packed_annotations.point_bbox_with_dp_indices |
|
].unbind(dim=1) |
|
x_lo, x_hi, x_w, jx_valid = _linear_interpolation_utilities( |
|
packed_annotations.x_gt, x0_gt, w_gt, x0_est, w_est, zw |
|
) |
|
y_lo, y_hi, y_w, jy_valid = _linear_interpolation_utilities( |
|
packed_annotations.y_gt, y0_gt, h_gt, y0_est, h_est, zh |
|
) |
|
j_valid = jx_valid * jy_valid |
|
|
|
w_ylo_xlo = (1.0 - x_w) * (1.0 - y_w) |
|
w_ylo_xhi = x_w * (1.0 - y_w) |
|
w_yhi_xlo = (1.0 - x_w) * y_w |
|
w_yhi_xhi = x_w * y_w |
|
|
|
return BilinearInterpolationHelper( |
|
packed_annotations, |
|
j_valid, |
|
y_lo, |
|
y_hi, |
|
x_lo, |
|
x_hi, |
|
w_ylo_xlo, |
|
w_ylo_xhi, |
|
|
|
w_yhi_xlo, |
|
w_yhi_xhi, |
|
) |
|
|
|
def extract_at_points( |
|
self, |
|
z_est, |
|
slice_fine_segm=None, |
|
w_ylo_xlo=None, |
|
w_ylo_xhi=None, |
|
w_yhi_xlo=None, |
|
w_yhi_xhi=None, |
|
): |
|
""" |
|
Extract ground truth values z_gt for valid point indices and estimated |
|
values z_est using bilinear interpolation over top-left (y_lo, x_lo), |
|
top-right (y_lo, x_hi), bottom-left (y_hi, x_lo) and bottom-right |
|
(y_hi, x_hi) values in z_est with corresponding weights: |
|
w_ylo_xlo, w_ylo_xhi, w_yhi_xlo and w_yhi_xhi. |
|
Use slice_fine_segm to slice dim=1 in z_est |
|
""" |
|
slice_fine_segm = ( |
|
self.packed_annotations.fine_segm_labels_gt |
|
if slice_fine_segm is None |
|
else slice_fine_segm |
|
) |
|
w_ylo_xlo = self.w_ylo_xlo if w_ylo_xlo is None else w_ylo_xlo |
|
w_ylo_xhi = self.w_ylo_xhi if w_ylo_xhi is None else w_ylo_xhi |
|
w_yhi_xlo = self.w_yhi_xlo if w_yhi_xlo is None else w_yhi_xlo |
|
w_yhi_xhi = self.w_yhi_xhi if w_yhi_xhi is None else w_yhi_xhi |
|
|
|
index_bbox = self.packed_annotations.point_bbox_indices |
|
z_est_sampled = ( |
|
z_est[index_bbox, slice_fine_segm, self.y_lo, self.x_lo] * w_ylo_xlo |
|
+ z_est[index_bbox, slice_fine_segm, self.y_lo, self.x_hi] * w_ylo_xhi |
|
+ z_est[index_bbox, slice_fine_segm, self.y_hi, self.x_lo] * w_yhi_xlo |
|
+ z_est[index_bbox, slice_fine_segm, self.y_hi, self.x_hi] * w_yhi_xhi |
|
) |
|
return z_est_sampled |
|
|
|
|
|
def resample_data( |
|
z, bbox_xywh_src, bbox_xywh_dst, wout, hout, mode: str = "nearest", padding_mode: str = "zeros" |
|
): |
|
""" |
|
Args: |
|
z (:obj: `torch.Tensor`): tensor of size (N,C,H,W) with data to be |
|
resampled |
|
bbox_xywh_src (:obj: `torch.Tensor`): tensor of size (N,4) containing |
|
source bounding boxes in format XYWH |
|
bbox_xywh_dst (:obj: `torch.Tensor`): tensor of size (N,4) containing |
|
destination bounding boxes in format XYWH |
|
Return: |
|
zresampled (:obj: `torch.Tensor`): tensor of size (N, C, Hout, Wout) |
|
with resampled values of z, where D is the discretization size |
|
""" |
|
n = bbox_xywh_src.size(0) |
|
assert n == bbox_xywh_dst.size(0), ( |
|
"The number of " |
|
"source ROIs for resampling ({}) should be equal to the number " |
|
"of destination ROIs ({})".format(bbox_xywh_src.size(0), bbox_xywh_dst.size(0)) |
|
) |
|
x0src, y0src, wsrc, hsrc = bbox_xywh_src.unbind(dim=1) |
|
x0dst, y0dst, wdst, hdst = bbox_xywh_dst.unbind(dim=1) |
|
x0dst_norm = 2 * (x0dst - x0src) / wsrc - 1 |
|
y0dst_norm = 2 * (y0dst - y0src) / hsrc - 1 |
|
x1dst_norm = 2 * (x0dst + wdst - x0src) / wsrc - 1 |
|
y1dst_norm = 2 * (y0dst + hdst - y0src) / hsrc - 1 |
|
grid_w = torch.arange(wout, device=z.device, dtype=torch.float) / wout |
|
grid_h = torch.arange(hout, device=z.device, dtype=torch.float) / hout |
|
grid_w_expanded = grid_w[None, None, :].expand(n, hout, wout) |
|
grid_h_expanded = grid_h[None, :, None].expand(n, hout, wout) |
|
dx_expanded = (x1dst_norm - x0dst_norm)[:, None, None].expand(n, hout, wout) |
|
dy_expanded = (y1dst_norm - y0dst_norm)[:, None, None].expand(n, hout, wout) |
|
x0_expanded = x0dst_norm[:, None, None].expand(n, hout, wout) |
|
y0_expanded = y0dst_norm[:, None, None].expand(n, hout, wout) |
|
grid_x = grid_w_expanded * dx_expanded + x0_expanded |
|
grid_y = grid_h_expanded * dy_expanded + y0_expanded |
|
grid = torch.stack((grid_x, grid_y), dim=3) |
|
|
|
zresampled = F.grid_sample(z, grid, mode=mode, padding_mode=padding_mode, align_corners=True) |
|
return zresampled |
|
|
|
|
|
class AnnotationsAccumulator(ABC): |
|
""" |
|
Abstract class for an accumulator for annotations that can produce |
|
dense annotations packed into tensors. |
|
""" |
|
|
|
@abstractmethod |
|
def accumulate(self, instances_one_image: Instances): |
|
""" |
|
Accumulate instances data for one image |
|
|
|
Args: |
|
instances_one_image (Instances): instances data to accumulate |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def pack(self) -> Any: |
|
""" |
|
Pack data into tensors |
|
""" |
|
pass |
|
|
|
|
|
@dataclass |
|
class PackedChartBasedAnnotations: |
|
""" |
|
Packed annotations for chart-based model training. The following attributes |
|
are defined: |
|
- fine_segm_labels_gt (tensor [K] of `int64`): GT fine segmentation point labels |
|
- x_gt (tensor [K] of `float32`): GT normalized X point coordinates |
|
- y_gt (tensor [K] of `float32`): GT normalized Y point coordinates |
|
- u_gt (tensor [K] of `float32`): GT point U values |
|
- v_gt (tensor [K] of `float32`): GT point V values |
|
- coarse_segm_gt (tensor [N, S, S] of `float32`): GT segmentation for bounding boxes |
|
- bbox_xywh_gt (tensor [N, 4] of `float32`): selected GT bounding boxes in |
|
XYWH format |
|
- bbox_xywh_est (tensor [N, 4] of `float32`): selected matching estimated |
|
bounding boxes in XYWH format |
|
- point_bbox_with_dp_indices (tensor [K] of `int64`): indices of bounding boxes |
|
with DensePose annotations that correspond to the point data |
|
- point_bbox_indices (tensor [K] of `int64`): indices of bounding boxes |
|
(not necessarily the selected ones with DensePose data) that correspond |
|
to the point data |
|
- bbox_indices (tensor [N] of `int64`): global indices of selected bounding |
|
boxes with DensePose annotations; these indices could be used to access |
|
features that are computed for all bounding boxes, not only the ones with |
|
DensePose annotations. |
|
Here K is the total number of points and N is the total number of instances |
|
with DensePose annotations. |
|
""" |
|
|
|
fine_segm_labels_gt: torch.Tensor |
|
x_gt: torch.Tensor |
|
y_gt: torch.Tensor |
|
u_gt: torch.Tensor |
|
v_gt: torch.Tensor |
|
coarse_segm_gt: Optional[torch.Tensor] |
|
bbox_xywh_gt: torch.Tensor |
|
bbox_xywh_est: torch.Tensor |
|
point_bbox_with_dp_indices: torch.Tensor |
|
point_bbox_indices: torch.Tensor |
|
bbox_indices: torch.Tensor |
|
|
|
|
|
class ChartBasedAnnotationsAccumulator(AnnotationsAccumulator): |
|
""" |
|
Accumulates annotations by batches that correspond to objects detected on |
|
individual images. Can pack them together into single tensors. |
|
""" |
|
|
|
def __init__(self): |
|
self.i_gt = [] |
|
self.x_gt = [] |
|
self.y_gt = [] |
|
self.u_gt = [] |
|
self.v_gt = [] |
|
self.s_gt = [] |
|
self.bbox_xywh_gt = [] |
|
self.bbox_xywh_est = [] |
|
self.point_bbox_with_dp_indices = [] |
|
self.point_bbox_indices = [] |
|
self.bbox_indices = [] |
|
self.nxt_bbox_with_dp_index = 0 |
|
self.nxt_bbox_index = 0 |
|
|
|
def accumulate(self, instances_one_image: Instances): |
|
""" |
|
Accumulate instances data for one image |
|
|
|
Args: |
|
instances_one_image (Instances): instances data to accumulate |
|
""" |
|
boxes_xywh_est = BoxMode.convert( |
|
instances_one_image.proposal_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS |
|
) |
|
boxes_xywh_gt = BoxMode.convert( |
|
instances_one_image.gt_boxes.tensor.clone(), BoxMode.XYXY_ABS, BoxMode.XYWH_ABS |
|
) |
|
n_matches = len(boxes_xywh_gt) |
|
assert n_matches == len( |
|
boxes_xywh_est |
|
), f"Got {len(boxes_xywh_est)} proposal boxes and {len(boxes_xywh_gt)} GT boxes" |
|
if not n_matches: |
|
|
|
return |
|
if ( |
|
not hasattr(instances_one_image, "gt_densepose") |
|
or instances_one_image.gt_densepose is None |
|
): |
|
|
|
self.nxt_bbox_index += n_matches |
|
return |
|
for box_xywh_est, box_xywh_gt, dp_gt in zip( |
|
boxes_xywh_est, boxes_xywh_gt, instances_one_image.gt_densepose |
|
): |
|
if (dp_gt is not None) and (len(dp_gt.x) > 0): |
|
|
|
|
|
self._do_accumulate(box_xywh_gt, box_xywh_est, dp_gt) |
|
self.nxt_bbox_index += 1 |
|
|
|
def _do_accumulate( |
|
self, box_xywh_gt: torch.Tensor, box_xywh_est: torch.Tensor, dp_gt: DensePoseDataRelative |
|
): |
|
""" |
|
Accumulate instances data for one image, given that the data is not empty |
|
|
|
Args: |
|
box_xywh_gt (tensor): GT bounding box |
|
box_xywh_est (tensor): estimated bounding box |
|
dp_gt (DensePoseDataRelative): GT densepose data |
|
""" |
|
self.i_gt.append(dp_gt.i) |
|
self.x_gt.append(dp_gt.x) |
|
self.y_gt.append(dp_gt.y) |
|
self.u_gt.append(dp_gt.u) |
|
self.v_gt.append(dp_gt.v) |
|
if hasattr(dp_gt, "segm"): |
|
self.s_gt.append(dp_gt.segm.unsqueeze(0)) |
|
self.bbox_xywh_gt.append(box_xywh_gt.view(-1, 4)) |
|
self.bbox_xywh_est.append(box_xywh_est.view(-1, 4)) |
|
self.point_bbox_with_dp_indices.append( |
|
torch.full_like(dp_gt.i, self.nxt_bbox_with_dp_index) |
|
) |
|
self.point_bbox_indices.append(torch.full_like(dp_gt.i, self.nxt_bbox_index)) |
|
self.bbox_indices.append(self.nxt_bbox_index) |
|
self.nxt_bbox_with_dp_index += 1 |
|
|
|
def pack(self) -> Optional[PackedChartBasedAnnotations]: |
|
""" |
|
Pack data into tensors |
|
""" |
|
if not len(self.i_gt): |
|
|
|
|
|
|
|
|
|
|
|
return None |
|
return PackedChartBasedAnnotations( |
|
fine_segm_labels_gt=torch.cat(self.i_gt, 0).long(), |
|
x_gt=torch.cat(self.x_gt, 0), |
|
y_gt=torch.cat(self.y_gt, 0), |
|
u_gt=torch.cat(self.u_gt, 0), |
|
v_gt=torch.cat(self.v_gt, 0), |
|
|
|
coarse_segm_gt=torch.cat(self.s_gt, 0) |
|
if len(self.s_gt) == len(self.bbox_xywh_gt) |
|
else None, |
|
bbox_xywh_gt=torch.cat(self.bbox_xywh_gt, 0), |
|
bbox_xywh_est=torch.cat(self.bbox_xywh_est, 0), |
|
point_bbox_with_dp_indices=torch.cat(self.point_bbox_with_dp_indices, 0).long(), |
|
point_bbox_indices=torch.cat(self.point_bbox_indices, 0).long(), |
|
bbox_indices=torch.as_tensor( |
|
self.bbox_indices, dtype=torch.long, device=self.x_gt[0].device |
|
).long(), |
|
) |
|
|
|
|
|
def extract_packed_annotations_from_matches( |
|
proposals_with_targets: List[Instances], accumulator: AnnotationsAccumulator |
|
) -> Any: |
|
for proposals_targets_per_image in proposals_with_targets: |
|
accumulator.accumulate(proposals_targets_per_image) |
|
return accumulator.pack() |
|
|
|
|
|
def sample_random_indices( |
|
n_indices: int, n_samples: int, device: Optional[torch.device] = None |
|
) -> Optional[torch.Tensor]: |
|
""" |
|
Samples `n_samples` random indices from range `[0..n_indices - 1]`. |
|
If `n_indices` is smaller than `n_samples`, returns `None` meaning that all indices |
|
are selected. |
|
Args: |
|
n_indices (int): total number of indices |
|
n_samples (int): number of indices to sample |
|
device (torch.device): the desired device of returned tensor |
|
Return: |
|
Tensor of selected vertex indices, or `None`, if all vertices are selected |
|
""" |
|
if (n_samples <= 0) or (n_indices <= n_samples): |
|
return None |
|
indices = torch.randperm(n_indices, device=device)[:n_samples] |
|
return indices |
|
|