|
import math |
|
import torch |
|
|
|
|
|
def diou_loss( |
|
boxes1: torch.Tensor, |
|
boxes2: torch.Tensor, |
|
reduction: str = "none", |
|
eps: float = 1e-7, |
|
) -> torch.Tensor: |
|
""" |
|
Distance Intersection over Union Loss (Zhaohui Zheng et. al) |
|
https://arxiv.org/abs/1911.08287 |
|
Args: |
|
boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). |
|
reduction: 'none' | 'mean' | 'sum' |
|
'none': No reduction will be applied to the output. |
|
'mean': The output will be averaged. |
|
'sum': The output will be summed. |
|
eps (float): small number to prevent division by zero |
|
""" |
|
|
|
x1, y1, x2, y2 = boxes1.unbind(dim=-1) |
|
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) |
|
|
|
|
|
assert (x2 >= x1).all(), "bad box: x1 larger than x2" |
|
assert (y2 >= y1).all(), "bad box: y1 larger than y2" |
|
|
|
|
|
xkis1 = torch.max(x1, x1g) |
|
ykis1 = torch.max(y1, y1g) |
|
xkis2 = torch.min(x2, x2g) |
|
ykis2 = torch.min(y2, y2g) |
|
|
|
intsct = torch.zeros_like(x1) |
|
mask = (ykis2 > ykis1) & (xkis2 > xkis1) |
|
intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) |
|
union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps |
|
iou = intsct / union |
|
|
|
|
|
xc1 = torch.min(x1, x1g) |
|
yc1 = torch.min(y1, y1g) |
|
xc2 = torch.max(x2, x2g) |
|
yc2 = torch.max(y2, y2g) |
|
diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps |
|
|
|
|
|
x_p = (x2 + x1) / 2 |
|
y_p = (y2 + y1) / 2 |
|
x_g = (x1g + x2g) / 2 |
|
y_g = (y1g + y2g) / 2 |
|
distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) |
|
|
|
|
|
loss = 1 - iou + (distance / diag_len) |
|
if reduction == "mean": |
|
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() |
|
elif reduction == "sum": |
|
loss = loss.sum() |
|
|
|
return loss |
|
|
|
|
|
def ciou_loss( |
|
boxes1: torch.Tensor, |
|
boxes2: torch.Tensor, |
|
reduction: str = "none", |
|
eps: float = 1e-7, |
|
) -> torch.Tensor: |
|
""" |
|
Complete Intersection over Union Loss (Zhaohui Zheng et. al) |
|
https://arxiv.org/abs/1911.08287 |
|
Args: |
|
boxes1, boxes2 (Tensor): box locations in XYXY format, shape (N, 4) or (4,). |
|
reduction: 'none' | 'mean' | 'sum' |
|
'none': No reduction will be applied to the output. |
|
'mean': The output will be averaged. |
|
'sum': The output will be summed. |
|
eps (float): small number to prevent division by zero |
|
""" |
|
|
|
x1, y1, x2, y2 = boxes1.unbind(dim=-1) |
|
x1g, y1g, x2g, y2g = boxes2.unbind(dim=-1) |
|
|
|
|
|
assert (x2 >= x1).all(), "bad box: x1 larger than x2" |
|
assert (y2 >= y1).all(), "bad box: y1 larger than y2" |
|
|
|
|
|
xkis1 = torch.max(x1, x1g) |
|
ykis1 = torch.max(y1, y1g) |
|
xkis2 = torch.min(x2, x2g) |
|
ykis2 = torch.min(y2, y2g) |
|
|
|
intsct = torch.zeros_like(x1) |
|
mask = (ykis2 > ykis1) & (xkis2 > xkis1) |
|
intsct[mask] = (xkis2[mask] - xkis1[mask]) * (ykis2[mask] - ykis1[mask]) |
|
union = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsct + eps |
|
iou = intsct / union |
|
|
|
|
|
xc1 = torch.min(x1, x1g) |
|
yc1 = torch.min(y1, y1g) |
|
xc2 = torch.max(x2, x2g) |
|
yc2 = torch.max(y2, y2g) |
|
diag_len = ((xc2 - xc1) ** 2) + ((yc2 - yc1) ** 2) + eps |
|
|
|
|
|
x_p = (x2 + x1) / 2 |
|
y_p = (y2 + y1) / 2 |
|
x_g = (x1g + x2g) / 2 |
|
y_g = (y1g + y2g) / 2 |
|
distance = ((x_p - x_g) ** 2) + ((y_p - y_g) ** 2) |
|
|
|
|
|
w_pred = x2 - x1 |
|
h_pred = y2 - y1 |
|
w_gt = x2g - x1g |
|
h_gt = y2g - y1g |
|
v = (4 / (math.pi**2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2) |
|
with torch.no_grad(): |
|
alpha = v / (1 - iou + v + eps) |
|
|
|
|
|
loss = 1 - iou + (distance / diag_len) + alpha * v |
|
if reduction == "mean": |
|
loss = loss.mean() if loss.numel() > 0 else 0.0 * loss.sum() |
|
elif reduction == "sum": |
|
loss = loss.sum() |
|
|
|
return loss |
|
|