File size: 15,205 Bytes
e7d5680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import argparse
import csv
import os
import warnings

import torch
from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates
from llava.mm_utils import get_anyres_image_grid_shape, get_model_name_from_path, process_images, tokenizer_image_token
from llava.model.builder import load_pretrained_model
from llava.model.llava_arch import unpad_image
from llava.utils import disable_torch_init
from tqdm import tqdm

from .utils import extract_frames, prompts, read_video_list

disable_torch_init()


def prepare_inputs_labels_for_multimodal(
    self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None
):
    # llava_arch.py
    vision_tower = self.get_vision_tower()
    if vision_tower is None or images is None or input_ids.shape[1] == 1:
        return input_ids, position_ids, attention_mask, past_key_values, None, labels

    if type(images) is list or images.ndim == 5:
        if type(images) is list:
            images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
        concat_images = torch.cat([image for image in images], dim=0)
        image_features = self.encode_images(concat_images)
        split_sizes = [image.shape[0] for image in images]
        image_features = torch.split(image_features, split_sizes, dim=0)
        mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
        image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
        if mm_patch_merge_type == "flat":
            image_features = [x.flatten(0, 1) for x in image_features]
        elif mm_patch_merge_type.startswith("spatial"):
            new_image_features = []
            for image_idx, image_feature in enumerate(image_features):
                if image_feature.shape[0] > 1:
                    base_image_feature = image_feature[0]
                    image_feature = image_feature[1:]
                    height = width = self.get_vision_tower().num_patches_per_side
                    assert height * width == base_image_feature.shape[0]
                    if image_aspect_ratio == "anyres":
                        num_patch_width, num_patch_height = get_anyres_image_grid_shape(
                            image_sizes[image_idx],
                            self.config.image_grid_pinpoints,
                            self.get_vision_tower().config.image_size,
                        )
                        image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                    else:
                        raise NotImplementedError
                    if "unpad" in mm_patch_merge_type:
                        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                        image_feature = unpad_image(image_feature, image_sizes[image_idx])
                        image_feature = torch.cat(
                            (
                                image_feature,
                                self.model.image_newline[:, None, None]
                                .expand(*image_feature.shape[:-1], 1)
                                .to(image_feature.device),
                            ),
                            dim=-1,
                        )
                        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                    else:
                        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                        image_feature = image_feature.flatten(0, 3)
                    image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                else:
                    image_feature = image_feature[0]
                    if "unpad" in mm_patch_merge_type:
                        image_feature = torch.cat(
                            (image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0
                        )
                new_image_features.append(image_feature)
            image_features = new_image_features
        else:
            raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
    else:
        image_features = self.encode_images(images)

    # TODO: image start / end is not implemented here to support pretraining.
    if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
        raise NotImplementedError

    # Let's just add dummy tensors if they do not exist,
    # it is a headache to deal with None all the time.
    # But it is not ideal, and if you have a better idea,
    # please open an issue / submit a PR, thanks.
    _labels = labels
    _position_ids = position_ids
    _attention_mask = attention_mask
    if attention_mask is None:
        attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
    else:
        attention_mask = attention_mask.bool()
    if position_ids is None:
        position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
    if labels is None:
        labels = torch.full_like(input_ids, IGNORE_INDEX)

    # remove the padding using attention_mask -- FIXME
    input_ids = [
        cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
    ]
    labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]

    new_input_embeds = []
    new_labels = []
    cur_image_idx = 0
    for batch_idx, cur_input_ids in enumerate(input_ids):
        num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
        if num_images == 0:
            cur_image_features = image_features[cur_image_idx]
            cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
            cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
            new_input_embeds.append(cur_input_embeds)
            new_labels.append(labels[batch_idx])
            cur_image_idx += 1
            continue

        image_token_indices = (
            [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
        )
        cur_input_ids_noim = []
        cur_labels = labels[batch_idx]
        cur_labels_noim = []
        for i in range(len(image_token_indices) - 1):
            cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
            cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
        split_sizes = [x.shape[0] for x in cur_labels_noim]
        cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
        cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
        cur_new_input_embeds = []
        cur_new_labels = []

        for i in range(num_images + 1):
            cur_new_input_embeds.append(cur_input_embeds_no_im[i])
            cur_new_labels.append(cur_labels_noim[i])
            if i < num_images:
                cur_image_features = image_features[cur_image_idx]
                cur_image_idx += 1
                cur_new_input_embeds.append(cur_image_features)
                cur_new_labels.append(
                    torch.full(
                        (cur_image_features.shape[0],),
                        IGNORE_INDEX,
                        device=cur_labels.device,
                        dtype=cur_labels.dtype,
                    )
                )

        cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

        cur_new_input_embeds = torch.cat(cur_new_input_embeds)
        cur_new_labels = torch.cat(cur_new_labels)

        new_input_embeds.append(cur_new_input_embeds)
        new_labels.append(cur_new_labels)

    # Truncate sequences to max length as image embeddings can make the sequence longer
    tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
    if tokenizer_model_max_length is not None:
        new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
        new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

    # Combine them
    max_len = max(x.shape[0] for x in new_input_embeds)
    batch_size = len(new_input_embeds)

    new_input_embeds_padded = []
    new_labels_padded = torch.full(
        (batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device
    )
    attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
    position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)

    for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
        cur_len = cur_new_embed.shape[0]
        if getattr(self.config, "tokenizer_padding_side", "right") == "left":
            new_input_embeds_padded.append(
                torch.cat(
                    (
                        torch.zeros(
                            (max_len - cur_len, cur_new_embed.shape[1]),
                            dtype=cur_new_embed.dtype,
                            device=cur_new_embed.device,
                        ),
                        cur_new_embed,
                    ),
                    dim=0,
                )
            )
            if cur_len > 0:
                new_labels_padded[i, -cur_len:] = cur_new_labels
                attention_mask[i, -cur_len:] = True
                position_ids[i, -cur_len:] = torch.arange(
                    0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                )
        else:
            new_input_embeds_padded.append(
                torch.cat(
                    (
                        cur_new_embed,
                        torch.zeros(
                            (max_len - cur_len, cur_new_embed.shape[1]),
                            dtype=cur_new_embed.dtype,
                            device=cur_new_embed.device,
                        ),
                    ),
                    dim=0,
                )
            )
            if cur_len > 0:
                new_labels_padded[i, :cur_len] = cur_new_labels
                attention_mask[i, :cur_len] = True
                position_ids[i, :cur_len] = torch.arange(
                    0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                )

    new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

    if _labels is None:
        new_labels = None
    else:
        new_labels = new_labels_padded

    if _attention_mask is None:
        attention_mask = None
    else:
        attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

    if _position_ids is None:
        position_ids = None

    return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels


@torch.inference_mode()
def main(args):
    # ======================================================
    # 1. read video list
    # ======================================================
    videos = read_video_list(args.video_folder, args.output_file)
    f = open(args.output_file, "a")
    writer = csv.writer(f)

    # ======================================================
    # 2. load model and prepare prompts
    # ======================================================
    model_path = "liuhaotian/llava-v1.6-34b"
    query = prompts[args.prompt]
    print(f"Prompt: {query}")
    conv = conv_templates["chatml_direct"].copy()
    conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + query)
    prompt = conv.get_prompt()

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")  # Pytorch non-meta copying warning fills out the console
        tokenizer, model, image_processor, context_len = load_pretrained_model(
            model_path=model_path,
            model_base=None,
            model_name=get_model_name_from_path(model_path),
        )
    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
    input_ids = input_ids.unsqueeze(0).to(model.device)

    # ======================================================
    # 3. generate captions
    # ======================================================
    bs = args.bs
    for i in tqdm(range(0, len(videos), bs)):
        # prepare a batch of inputs
        video_files = videos[i : i + bs]
        frames = []
        video_lengths = []
        for video_file in video_files:
            frame, length = extract_frames(os.path.join(args.video_folder, video_file))
            if len(frame) < 3:
                continue
            frames.append(frame)
            video_lengths.append(length)
        if len(frames) == 0:
            continue

        # encode the batch of inputs
        samples = []
        for imgs in frames:
            imgs_size = [img.size for img in imgs]
            imgs = process_images(imgs, image_processor, model.config)
            imgs = imgs.to(model.device, dtype=torch.float16)
            with torch.inference_mode():
                _, _, _, _, inputs_embeds, _ = prepare_inputs_labels_for_multimodal(
                    model, input_ids, None, None, None, None, images=imgs, image_sizes=imgs_size
                )
            samples.append(inputs_embeds)

        # padding
        max_len = max([sample.shape[1] for sample in samples])
        attention_mask = torch.tensor(
            [[0] * (max_len - samples[i].shape[1]) + [1] * samples[i].shape[1] for i in range(len(samples))]
        ).to(model.device)
        inputs_embeds = [
            torch.cat(
                [
                    torch.zeros(
                        (1, max_len - samples[i].shape[1], samples[i].shape[-1]),
                        device=model.device,
                        dtype=torch.float16,
                    ),
                    samples[i],
                ],
                dim=1,
            )
            for i in range(len(samples))
        ]
        inputs_embeds = torch.cat(inputs_embeds, dim=0)

        # generate outputs
        output_ids = super(type(model), model).generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            do_sample=True,
            temperature=0.2,
            max_new_tokens=512,
            use_cache=True,
        )
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        outputs = [output.replace("\n", " ").strip() for output in outputs]

        # save results
        result = list(zip(video_files, outputs, video_lengths))
        for t in result:
            writer.writerow(t)

    f.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("video_folder", type=str)
    parser.add_argument("output_file", type=str)
    parser.add_argument("--bs", type=int, default=32)
    parser.add_argument("--prompt", type=str, default="three_frames")
    args = parser.parse_args()

    main(args)