Spaces:
Runtime error
Runtime error
File size: 15,205 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import argparse
import csv
import os
import warnings
import torch
from llava.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates
from llava.mm_utils import get_anyres_image_grid_shape, get_model_name_from_path, process_images, tokenizer_image_token
from llava.model.builder import load_pretrained_model
from llava.model.llava_arch import unpad_image
from llava.utils import disable_torch_init
from tqdm import tqdm
from .utils import extract_frames, prompts, read_video_list
disable_torch_init()
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, image_sizes=None
):
# llava_arch.py
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
if mm_patch_merge_type == "flat":
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith("spatial"):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if image_aspect_ratio == "anyres":
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.get_vision_tower().config.image_size,
)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError
if "unpad" in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.model.image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat(
(image_feature, self.model.image_newline[None].to(image_feature.device)), dim=0
)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
input_ids = [
cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = (
[-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
)
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device
)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
@torch.inference_mode()
def main(args):
# ======================================================
# 1. read video list
# ======================================================
videos = read_video_list(args.video_folder, args.output_file)
f = open(args.output_file, "a")
writer = csv.writer(f)
# ======================================================
# 2. load model and prepare prompts
# ======================================================
model_path = "liuhaotian/llava-v1.6-34b"
query = prompts[args.prompt]
print(f"Prompt: {query}")
conv = conv_templates["chatml_direct"].copy()
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\n" + query)
prompt = conv.get_prompt()
with warnings.catch_warnings():
warnings.simplefilter("ignore") # Pytorch non-meta copying warning fills out the console
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path),
)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).to(model.device)
# ======================================================
# 3. generate captions
# ======================================================
bs = args.bs
for i in tqdm(range(0, len(videos), bs)):
# prepare a batch of inputs
video_files = videos[i : i + bs]
frames = []
video_lengths = []
for video_file in video_files:
frame, length = extract_frames(os.path.join(args.video_folder, video_file))
if len(frame) < 3:
continue
frames.append(frame)
video_lengths.append(length)
if len(frames) == 0:
continue
# encode the batch of inputs
samples = []
for imgs in frames:
imgs_size = [img.size for img in imgs]
imgs = process_images(imgs, image_processor, model.config)
imgs = imgs.to(model.device, dtype=torch.float16)
with torch.inference_mode():
_, _, _, _, inputs_embeds, _ = prepare_inputs_labels_for_multimodal(
model, input_ids, None, None, None, None, images=imgs, image_sizes=imgs_size
)
samples.append(inputs_embeds)
# padding
max_len = max([sample.shape[1] for sample in samples])
attention_mask = torch.tensor(
[[0] * (max_len - samples[i].shape[1]) + [1] * samples[i].shape[1] for i in range(len(samples))]
).to(model.device)
inputs_embeds = [
torch.cat(
[
torch.zeros(
(1, max_len - samples[i].shape[1], samples[i].shape[-1]),
device=model.device,
dtype=torch.float16,
),
samples[i],
],
dim=1,
)
for i in range(len(samples))
]
inputs_embeds = torch.cat(inputs_embeds, dim=0)
# generate outputs
output_ids = super(type(model), model).generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
do_sample=True,
temperature=0.2,
max_new_tokens=512,
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
outputs = [output.replace("\n", " ").strip() for output in outputs]
# save results
result = list(zip(video_files, outputs, video_lengths))
for t in result:
writer.writerow(t)
f.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("video_folder", type=str)
parser.add_argument("output_file", type=str)
parser.add_argument("--bs", type=int, default=32)
parser.add_argument("--prompt", type=str, default="three_frames")
args = parser.parse_args()
main(args)
|