File size: 21,292 Bytes
e7d5680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha
# Latte:  https://github.com/Vchitect/Latte
# DiT:    https://github.com/facebookresearch/DiT/tree/main
# GLIDE:  https://github.com/openai/glide-text2im
# MAE:    https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import math

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import xformers.ops
from einops import rearrange
from timm.models.vision_transformer import Mlp

from opensora.acceleration.communications import all_to_all, split_forward_gather_backward
from opensora.acceleration.parallel_states import get_sequence_parallel_group

approx_gelu = lambda: nn.GELU(approximate="tanh")


def get_layernorm(hidden_size: torch.Tensor, eps: float, affine: bool, use_kernel: bool):
    if use_kernel:
        try:
            from apex.normalization import FusedLayerNorm

            return FusedLayerNorm(hidden_size, elementwise_affine=affine, eps=eps)
        except ImportError:
            raise RuntimeError("FusedLayerNorm not available. Please install apex.")
    else:
        return nn.LayerNorm(hidden_size, eps, elementwise_affine=affine)


def modulate(norm_func, x, shift, scale):
    # Suppose x is (B, N, D), shift is (B, D), scale is (B, D)
    dtype = x.dtype
    x = norm_func(x.to(torch.float32)).to(dtype)
    x = x * (scale.unsqueeze(1) + 1) + shift.unsqueeze(1)
    x = x.to(dtype)
    return x


def t2i_modulate(x, shift, scale):
    return x * (1 + scale) + shift


# ===============================================
# General-purpose Layers
# ===============================================


class PatchEmbed3D(nn.Module):
    """Video to Patch Embedding.

    Args:
        patch_size (int): Patch token size. Default: (2,4,4).
        in_chans (int): Number of input video channels. Default: 3.
        embed_dim (int): Number of linear projection output channels. Default: 96.
        norm_layer (nn.Module, optional): Normalization layer. Default: None
    """

    def __init__(
        self,
        patch_size=(2, 4, 4),
        in_chans=3,
        embed_dim=96,
        norm_layer=None,
        flatten=True,
    ):
        super().__init__()
        self.patch_size = patch_size
        self.flatten = flatten

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        """Forward function."""
        # padding
        _, _, D, H, W = x.size()
        if W % self.patch_size[2] != 0:
            x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2]))
        if H % self.patch_size[1] != 0:
            x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1]))
        if D % self.patch_size[0] != 0:
            x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0]))

        x = self.proj(x)  # (B C T H W)
        if self.norm is not None:
            D, Wh, Ww = x.size(2), x.size(3), x.size(4)
            x = x.flatten(2).transpose(1, 2)
            x = self.norm(x)
            x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww)
        if self.flatten:
            x = x.flatten(2).transpose(1, 2)  # BCTHW -> BNC
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
        enable_flashattn: bool = False,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        self.enable_flashattn = enable_flashattn

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape
        qkv = self.qkv(x)
        qkv_shape = (B, N, 3, self.num_heads, self.head_dim)
        if self.enable_flashattn:
            qkv_permute_shape = (2, 0, 1, 3, 4)
        else:
            qkv_permute_shape = (2, 0, 3, 1, 4)
        qkv = qkv.view(qkv_shape).permute(qkv_permute_shape)
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)
        if self.enable_flashattn:
            from flash_attn import flash_attn_func

            x = flash_attn_func(
                q,
                k,
                v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
                softmax_scale=self.scale,
            )
        else:
            dtype = q.dtype
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)  # translate attn to float32
            attn = attn.to(torch.float32)
            attn = attn.softmax(dim=-1)
            attn = attn.to(dtype)  # cast back attn to original dtype
            attn = self.attn_drop(attn)
            x = attn @ v

        x_output_shape = (B, N, C)
        if not self.enable_flashattn:
            x = x.transpose(1, 2)
        x = x.reshape(x_output_shape)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SeqParallelAttention(Attention):
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
        enable_flashattn: bool = False,
    ) -> None:
        super().__init__(
            dim=dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
            enable_flashattn=enable_flashattn,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, N, C = x.shape  # for sequence parallel here, the N is a local sequence length
        qkv = self.qkv(x)
        qkv_shape = (B, N, 3, self.num_heads, self.head_dim)

        qkv = qkv.view(qkv_shape)

        sp_group = get_sequence_parallel_group()

        # apply all_to_all to gather sequence and split attention heads
        # [B, SUB_N, 3, NUM_HEAD, HEAD_DIM] -> [B, N, 3, NUM_HEAD_PER_DEVICE, HEAD_DIM]
        qkv = all_to_all(qkv, sp_group, scatter_dim=3, gather_dim=1)

        if self.enable_flashattn:
            qkv_permute_shape = (2, 0, 1, 3, 4)  # [3, B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM]
        else:
            qkv_permute_shape = (2, 0, 3, 1, 4)  # [3, B, NUM_HEAD_PER_DEVICE, N, HEAD_DIM]
        qkv = qkv.permute(qkv_permute_shape)

        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)
        if self.enable_flashattn:
            from flash_attn import flash_attn_func

            x = flash_attn_func(
                q,
                k,
                v,
                dropout_p=self.attn_drop.p if self.training else 0.0,
                softmax_scale=self.scale,
            )
        else:
            dtype = q.dtype
            q = q * self.scale
            attn = q @ k.transpose(-2, -1)  # translate attn to float32
            attn = attn.to(torch.float32)
            attn = attn.softmax(dim=-1)
            attn = attn.to(dtype)  # cast back attn to original dtype
            attn = self.attn_drop(attn)
            x = attn @ v

        if not self.enable_flashattn:
            x = x.transpose(1, 2)

        # apply all to all to gather back attention heads and split sequence
        # [B, N, NUM_HEAD_PER_DEVICE, HEAD_DIM]  -> [B, SUB_N, NUM_HEAD, HEAD_DIM]
        x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2)

        # reshape outputs back to [B, N, C]
        x_output_shape = (B, N, C)
        x = x.reshape(x_output_shape)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class MultiHeadCrossAttention(nn.Module):
    def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0):
        super(MultiHeadCrossAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"

        self.d_model = d_model
        self.num_heads = num_heads
        self.head_dim = d_model // num_heads

        self.q_linear = nn.Linear(d_model, d_model)
        self.kv_linear = nn.Linear(d_model, d_model * 2)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(d_model, d_model)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, cond, mask=None):
        # query/value: img tokens; key: condition; mask: if padding tokens
        B, N, C = x.shape

        q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim)
        kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim)
        k, v = kv.unbind(2)

        attn_bias = None
        if mask is not None:
            attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
        x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)

        x = x.view(B, -1, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class SeqParallelMultiHeadCrossAttention(MultiHeadCrossAttention):
    def __init__(
        self,
        d_model,
        num_heads,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__(d_model=d_model, num_heads=num_heads, attn_drop=attn_drop, proj_drop=proj_drop)

    def forward(self, x, cond, mask=None):
        # query/value: img tokens; key: condition; mask: if padding tokens
        sp_group = get_sequence_parallel_group()
        sp_size = dist.get_world_size(sp_group)
        B, SUB_N, C = x.shape
        N = SUB_N * sp_size

        # shape:
        # q, k, v: [B, SUB_N, NUM_HEADS, HEAD_DIM]
        q = self.q_linear(x).view(B, -1, self.num_heads, self.head_dim)
        kv = self.kv_linear(cond).view(B, -1, 2, self.num_heads, self.head_dim)
        k, v = kv.unbind(2)

        # apply all_to_all to gather sequence and split attention heads
        q = all_to_all(q, sp_group, scatter_dim=2, gather_dim=1)

        k = split_forward_gather_backward(k, get_sequence_parallel_group(), dim=2, grad_scale="down")
        v = split_forward_gather_backward(v, get_sequence_parallel_group(), dim=2, grad_scale="down")

        q = q.view(1, -1, self.num_heads // sp_size, self.head_dim)
        k = k.view(1, -1, self.num_heads // sp_size, self.head_dim)
        v = v.view(1, -1, self.num_heads // sp_size, self.head_dim)

        # compute attention
        attn_bias = None
        if mask is not None:
            attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask)
        x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias)
        
        # apply all to all to gather back attention heads and scatter sequence
        x = x.view(B, -1, self.num_heads // sp_size, self.head_dim)
        x = all_to_all(x, sp_group, scatter_dim=1, gather_dim=2)

        # apply output projection
        x = x.view(B, -1, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """

    def __init__(self, hidden_size, num_patch, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final, x, shift, scale)
        x = self.linear(x)
        return x


class T2IFinalLayer(nn.Module):
    """
    The final layer of PixArt.
    """

    def __init__(self, hidden_size, num_patch, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True)
        self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5)
        self.out_channels = out_channels

    def forward(self, x, t):
        shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1)
        x = t2i_modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


# ===============================================
# Embedding Layers for Timesteps and Class Labels
# ===============================================


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half)
        freqs = freqs.to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t, dtype):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        if t_freq.dtype != dtype:
            t_freq = t_freq.to(dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        return self.embedding_table(labels)


class SizeEmbedder(TimestepEmbedder):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size)
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size
        self.outdim = hidden_size

    def forward(self, s, bs):
        if s.ndim == 1:
            s = s[:, None]
        assert s.ndim == 2
        if s.shape[0] != bs:
            s = s.repeat(bs // s.shape[0], 1)
            assert s.shape[0] == bs
        b, dims = s.shape[0], s.shape[1]
        s = rearrange(s, "b d -> (b d)")
        s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype)
        s_emb = self.mlp(s_freq)
        s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim)
        return s_emb

    @property
    def dtype(self):
        return next(self.parameters()).dtype


class CaptionEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """

    def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120):
        super().__init__()
        self.y_proj = Mlp(
            in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0
        )
        self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5))
        self.uncond_prob = uncond_prob

    def token_drop(self, caption, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob
        else:
            drop_ids = force_drop_ids == 1
        caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption)
        return caption

    def forward(self, caption, train, force_drop_ids=None):
        if train:
            assert caption.shape[2:] == self.y_embedding.shape
        use_dropout = self.uncond_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            caption = self.token_drop(caption, force_drop_ids)
        caption = self.y_proj(caption)
        return caption


# ===============================================
# Sine/Cosine Positional Embedding Functions
# ===============================================
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py


def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, scale=1.0, base_size=None):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    if not isinstance(grid_size, tuple):
        grid_size = (grid_size, grid_size)

    grid_h = np.arange(grid_size[0], dtype=np.float32) / scale
    grid_w = np.arange(grid_size[1], dtype=np.float32) / scale
    if base_size is not None:
        grid_h *= base_size / grid_size[0]
        grid_w *= base_size / grid_size[1]
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token and extra_tokens > 0:
        pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed(embed_dim, length, scale=1.0):
    pos = np.arange(0, length)[..., None] / scale
    return get_1d_sincos_pos_embed_from_grid(embed_dim, pos)


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float64)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb