Spaces:
Runtime error
Runtime error
File size: 8,559 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import functools
import json
import logging
import operator
import os
from typing import Tuple
import colossalai
import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.booster import Booster
from colossalai.checkpoint_io import GeneralCheckpointIO
from colossalai.cluster import DistCoordinator
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torchvision.datasets.utils import download_url
pretrained_models = {
"DiT-XL-2-512x512.pt": "https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-512x512.pt",
"DiT-XL-2-256x256.pt": "https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt",
"Latte-XL-2-256x256-ucf101.pt": "https://huggingface.co/maxin-cn/Latte/resolve/main/ucf101.pt",
"PixArt-XL-2-256x256.pth": "https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/PixArt-XL-2-256x256.pth",
"PixArt-XL-2-SAM-256x256.pth": "https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/PixArt-XL-2-SAM-256x256.pth",
"PixArt-XL-2-512x512.pth": "https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/PixArt-XL-2-512x512.pth",
"PixArt-XL-2-1024-MS.pth": "https://huggingface.co/PixArt-alpha/PixArt-alpha/resolve/main/PixArt-XL-2-1024-MS.pth",
}
def reparameter(ckpt, name=None):
if "DiT" in name:
ckpt["x_embedder.proj.weight"] = ckpt["x_embedder.proj.weight"].unsqueeze(2)
del ckpt["pos_embed"]
elif "Latte" in name:
ckpt = ckpt["ema"]
ckpt["x_embedder.proj.weight"] = ckpt["x_embedder.proj.weight"].unsqueeze(2)
del ckpt["pos_embed"]
del ckpt["temp_embed"]
elif "PixArt" in name:
ckpt = ckpt["state_dict"]
ckpt["x_embedder.proj.weight"] = ckpt["x_embedder.proj.weight"].unsqueeze(2)
del ckpt["pos_embed"]
return ckpt
def find_model(model_name):
"""
Finds a pre-trained DiT model, downloading it if necessary. Alternatively, loads a model from a local path.
"""
if model_name in pretrained_models: # Find/download our pre-trained DiT checkpoints
model = download_model(model_name)
model = reparameter(model, model_name)
return model
else: # Load a custom DiT checkpoint:
assert os.path.isfile(model_name), f"Could not find DiT checkpoint at {model_name}"
checkpoint = torch.load(model_name, map_location=lambda storage, loc: storage)
if "pos_embed_temporal" in checkpoint:
del checkpoint["pos_embed_temporal"]
if "pos_embed" in checkpoint:
del checkpoint["pos_embed"]
if "ema" in checkpoint: # supports checkpoints from train.py
checkpoint = checkpoint["ema"]
return checkpoint
def download_model(model_name):
"""
Downloads a pre-trained DiT model from the web.
"""
assert model_name in pretrained_models
local_path = f"pretrained_models/{model_name}"
if not os.path.isfile(local_path):
os.makedirs("pretrained_models", exist_ok=True)
web_path = pretrained_models[model_name]
download_url(web_path, "pretrained_models", model_name)
model = torch.load(local_path, map_location=lambda storage, loc: storage)
return model
def load_from_sharded_state_dict(model, ckpt_path):
ckpt_io = GeneralCheckpointIO()
ckpt_io.load_model(model, os.path.join(ckpt_path, "model"))
def model_sharding(model: torch.nn.Module):
global_rank = dist.get_rank()
world_size = dist.get_world_size()
for _, param in model.named_parameters():
padding_size = (world_size - param.numel() % world_size) % world_size
if padding_size > 0:
padding_param = torch.nn.functional.pad(param.data.view(-1), [0, padding_size])
else:
padding_param = param.data.view(-1)
splited_params = padding_param.split(padding_param.numel() // world_size)
splited_params = splited_params[global_rank]
param.data = splited_params
def load_json(file_path: str):
with open(file_path, "r") as f:
return json.load(f)
def save_json(data, file_path: str):
with open(file_path, "w") as f:
json.dump(data, f, indent=4)
def remove_padding(tensor: torch.Tensor, original_shape: Tuple) -> torch.Tensor:
return tensor[: functools.reduce(operator.mul, original_shape)]
def model_gathering(model: torch.nn.Module, model_shape_dict: dict):
global_rank = dist.get_rank()
global_size = dist.get_world_size()
for name, param in model.named_parameters():
all_params = [torch.empty_like(param.data) for _ in range(global_size)]
dist.all_gather(all_params, param.data, group=dist.group.WORLD)
if int(global_rank) == 0:
all_params = torch.cat(all_params)
param.data = remove_padding(all_params, model_shape_dict[name]).view(model_shape_dict[name])
dist.barrier()
def record_model_param_shape(model: torch.nn.Module) -> dict:
param_shape = {}
for name, param in model.named_parameters():
param_shape[name] = param.shape
return param_shape
def save(
booster: Booster,
model: nn.Module,
ema: nn.Module,
optimizer: Optimizer,
lr_scheduler: _LRScheduler,
epoch: int,
step: int,
global_step: int,
batch_size: int,
coordinator: DistCoordinator,
save_dir: str,
shape_dict: dict,
):
save_dir = os.path.join(save_dir, f"epoch{epoch}-global_step{global_step}")
os.makedirs(os.path.join(save_dir, "model"), exist_ok=True)
booster.save_model(model, os.path.join(save_dir, "model"), shard=True)
# ema is not boosted, so we don't need to use booster.save_model
model_gathering(ema, shape_dict)
global_rank = dist.get_rank()
if int(global_rank) == 0:
torch.save(ema.state_dict(), os.path.join(save_dir, "ema.pt"))
model_sharding(ema)
booster.save_optimizer(optimizer, os.path.join(save_dir, "optimizer"), shard=True, size_per_shard=4096)
if lr_scheduler is not None:
booster.save_lr_scheduler(lr_scheduler, os.path.join(save_dir, "lr_scheduler"))
running_states = {
"epoch": epoch,
"step": step,
"global_step": global_step,
"sample_start_index": step * batch_size,
}
if coordinator.is_master():
save_json(running_states, os.path.join(save_dir, "running_states.json"))
dist.barrier()
def load(
booster: Booster, model: nn.Module, ema: nn.Module, optimizer: Optimizer, lr_scheduler: _LRScheduler, load_dir: str
) -> Tuple[int, int, int]:
booster.load_model(model, os.path.join(load_dir, "model"))
# ema is not boosted, so we don't use booster.load_model
# ema.load_state_dict(torch.load(os.path.join(load_dir, "ema.pt")))
ema.load_state_dict(torch.load(os.path.join(load_dir, "ema.pt"), map_location=torch.device("cpu")))
booster.load_optimizer(optimizer, os.path.join(load_dir, "optimizer"))
if lr_scheduler is not None:
booster.load_lr_scheduler(lr_scheduler, os.path.join(load_dir, "lr_scheduler"))
running_states = load_json(os.path.join(load_dir, "running_states.json"))
dist.barrier()
return running_states["epoch"], running_states["step"], running_states["sample_start_index"]
def create_logger(logging_dir):
"""
Create a logger that writes to a log file and stdout.
"""
if dist.get_rank() == 0: # real logger
logging.basicConfig(
level=logging.INFO,
format="[\033[34m%(asctime)s\033[0m] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(), logging.FileHandler(f"{logging_dir}/log.txt")],
)
logger = logging.getLogger(__name__)
else: # dummy logger (does nothing)
logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())
return logger
def load_checkpoint(model, ckpt_path, save_as_pt=True):
if ckpt_path.endswith(".pt") or ckpt_path.endswith(".pth"):
state_dict = find_model(ckpt_path)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
elif os.path.isdir(ckpt_path):
load_from_sharded_state_dict(model, ckpt_path)
if save_as_pt:
save_path = os.path.join(ckpt_path, "model_ckpt.pt")
torch.save(model.state_dict(), save_path)
print(f"Model checkpoint saved to {save_path}")
else:
raise ValueError(f"Invalid checkpoint path: {ckpt_path}")
|