Spaces:
Runtime error
Runtime error
File size: 14,198 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.vision_transformer import Mlp
from opensora.acceleration.checkpoint import auto_grad_checkpoint
from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward
from opensora.acceleration.parallel_states import get_sequence_parallel_group
from opensora.models.layers.blocks import (
Attention,
CaptionEmbedder,
MultiHeadCrossAttention,
PatchEmbed3D,
SeqParallelAttention,
SeqParallelMultiHeadCrossAttention,
T2IFinalLayer,
TimestepEmbedder,
approx_gelu,
get_1d_sincos_pos_embed,
get_2d_sincos_pos_embed,
get_layernorm,
t2i_modulate,
)
from opensora.registry import MODELS
from opensora.utils.ckpt_utils import load_checkpoint
class STDiTBlock(nn.Module):
def __init__(
self,
hidden_size,
num_heads,
d_s=None,
d_t=None,
mlp_ratio=4.0,
drop_path=0.0,
enable_flashattn=False,
enable_layernorm_kernel=False,
enable_sequence_parallelism=False,
):
super().__init__()
self.hidden_size = hidden_size
self.enable_flashattn = enable_flashattn
self._enable_sequence_parallelism = enable_sequence_parallelism
if enable_sequence_parallelism:
self.attn_cls = SeqParallelAttention
self.mha_cls = SeqParallelMultiHeadCrossAttention
else:
self.attn_cls = Attention
self.mha_cls = MultiHeadCrossAttention
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.attn = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flashattn=enable_flashattn,
)
self.cross_attn = self.mha_cls(hidden_size, num_heads)
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
# temporal attention
self.d_s = d_s
self.d_t = d_t
if self._enable_sequence_parallelism:
sp_size = dist.get_world_size(get_sequence_parallel_group())
# make sure d_t is divisible by sp_size
assert d_t % sp_size == 0
self.d_t = d_t // sp_size
self.attn_temp = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flashattn=self.enable_flashattn,
)
def forward(self, x, y, t, mask=None, tpe=None):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa)
# spatial branch
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s)
x_s = self.attn(x_s)
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s)
x = x + self.drop_path(gate_msa * x_s)
# temporal branch
x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s)
if tpe is not None:
x_t = x_t + tpe
x_t = self.attn_temp(x_t)
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s)
x = x + self.drop_path(gate_msa * x_t)
# cross attn
x = x + self.cross_attn(x, y, mask)
# mlp
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
@MODELS.register_module()
class STDiT(nn.Module):
def __init__(
self,
input_size=(1, 32, 32),
in_channels=4,
patch_size=(1, 2, 2),
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
pred_sigma=True,
drop_path=0.0,
no_temporal_pos_emb=False,
caption_channels=4096,
model_max_length=120,
dtype=torch.float32,
space_scale=1.0,
time_scale=1.0,
freeze=None,
enable_flashattn=False,
enable_layernorm_kernel=False,
enable_sequence_parallelism=False,
):
super().__init__()
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.hidden_size = hidden_size
self.patch_size = patch_size
self.input_size = input_size
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)])
self.num_patches = num_patches
self.num_temporal = input_size[0] // patch_size[0]
self.num_spatial = num_patches // self.num_temporal
self.num_heads = num_heads
self.dtype = dtype
self.no_temporal_pos_emb = no_temporal_pos_emb
self.depth = depth
self.mlp_ratio = mlp_ratio
self.enable_flashattn = enable_flashattn
self.enable_layernorm_kernel = enable_layernorm_kernel
self.space_scale = space_scale
self.time_scale = time_scale
self.register_buffer("pos_embed", self.get_spatial_pos_embed())
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed())
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels,
hidden_size=hidden_size,
uncond_prob=class_dropout_prob,
act_layer=approx_gelu,
token_num=model_max_length,
)
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)]
self.blocks = nn.ModuleList(
[
STDiTBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=self.mlp_ratio,
drop_path=drop_path[i],
enable_flashattn=self.enable_flashattn,
enable_layernorm_kernel=self.enable_layernorm_kernel,
enable_sequence_parallelism=enable_sequence_parallelism,
d_t=self.num_temporal,
d_s=self.num_spatial,
)
for i in range(self.depth)
]
)
self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels)
# init model
self.initialize_weights()
self.initialize_temporal()
if freeze is not None:
assert freeze in ["not_temporal", "text"]
if freeze == "not_temporal":
self.freeze_not_temporal()
elif freeze == "text":
self.freeze_text()
# sequence parallel related configs
self.enable_sequence_parallelism = enable_sequence_parallelism
if enable_sequence_parallelism:
self.sp_rank = dist.get_rank(get_sequence_parallel_group())
else:
self.sp_rank = None
def forward(self, x, timestep, y, mask=None):
"""
Forward pass of STDiT.
Args:
x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W]
timestep (torch.Tensor): diffusion time steps; of shape [B]
y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C]
mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token]
Returns:
x (torch.Tensor): output latent representation; of shape [B, C, T, H, W]
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
# embedding
x = self.x_embedder(x) # [B, N, C]
x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial)
x = x + self.pos_embed
x = rearrange(x, "B T S C -> B (T S) C")
# shard over the sequence dim if sp is enabled
if self.enable_sequence_parallelism:
x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down")
t = self.t_embedder(timestep, dtype=x.dtype) # [B, C]
t0 = self.t_block(t) # [B, C]
y = self.y_embedder(y, self.training) # [B, 1, N_token, C]
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# blocks
for i, block in enumerate(self.blocks):
if i == 0:
if self.enable_sequence_parallelism:
tpe = torch.chunk(
self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1
)[self.sp_rank].contiguous()
else:
tpe = self.pos_embed_temporal
else:
tpe = None
x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe)
if self.enable_sequence_parallelism:
x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up")
# x.shape: [B, N, C]
# final process
x = self.final_layer(x, t) # [B, N, C=T_p * H_p * W_p * C_out]
x = self.unpatchify(x) # [B, C_out, T, H, W]
# cast to float32 for better accuracy
x = x.to(torch.float32)
return x
def unpatchify(self, x):
"""
Args:
x (torch.Tensor): of shape [B, N, C]
Return:
x (torch.Tensor): of shape [B, C_out, T, H, W]
"""
N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
T_p, H_p, W_p = self.patch_size
x = rearrange(
x,
"B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)",
N_t=N_t,
N_h=N_h,
N_w=N_w,
T_p=T_p,
H_p=H_p,
W_p=W_p,
C_out=self.out_channels,
)
return x
def unpatchify_old(self, x):
c = self.out_channels
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
pt, ph, pw = self.patch_size
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def get_spatial_pos_embed(self, grid_size=None):
if grid_size is None:
grid_size = self.input_size[1:]
pos_embed = get_2d_sincos_pos_embed(
self.hidden_size,
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]),
scale=self.space_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def get_temporal_pos_embed(self):
pos_embed = get_1d_sincos_pos_embed(
self.hidden_size,
self.input_size[0] // self.patch_size[0],
scale=self.time_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def freeze_not_temporal(self):
for n, p in self.named_parameters():
if "attn_temp" not in n:
p.requires_grad = False
def freeze_text(self):
for n, p in self.named_parameters():
if "cross_attn" in n:
p.requires_grad = False
def initialize_temporal(self):
for block in self.blocks:
nn.init.constant_(block.attn_temp.proj.weight, 0)
nn.init.constant_(block.attn_temp.proj.bias, 0)
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
# Zero-out adaLN modulation layers in PixArt blocks:
for block in self.blocks:
nn.init.constant_(block.cross_attn.proj.weight, 0)
nn.init.constant_(block.cross_attn.proj.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
@MODELS.register_module("STDiT-XL/2")
def STDiT_XL_2(from_pretrained=None, **kwargs):
model = STDiT(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs)
if from_pretrained is not None:
load_checkpoint(model, from_pretrained)
return model
|