File size: 13,776 Bytes
e7d5680
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# Adapted from PixArt
#
# Copyright (C) 2023  PixArt-alpha/PixArt-alpha
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
#
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha
# T5:     https://github.com/google-research/text-to-text-transfer-transformer
# --------------------------------------------------------


import html
import os
import re
import urllib.parse as ul

import ftfy
import torch
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, T5EncoderModel

from opensora.registry import MODELS


class T5Embedder:
    available_models = ["t5-v1_1-xxl"]
    bad_punct_regex = re.compile(
        r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
    )  # noqa

    def __init__(
        self,
        device,
        dir_or_name="t5-v1_1-xxl",
        *,
        local_cache=False,
        cache_dir=None,
        hf_token=None,
        use_text_preprocessing=True,
        t5_model_kwargs=None,
        torch_dtype=None,
        use_offload_folder=None,
        model_max_length=120,
    ):
        self.device = torch.device(device)
        self.torch_dtype = torch_dtype or torch.bfloat16
        if t5_model_kwargs is None:
            t5_model_kwargs = {"low_cpu_mem_usage": True, "torch_dtype": self.torch_dtype}
            if use_offload_folder is not None:
                t5_model_kwargs["offload_folder"] = use_offload_folder
                t5_model_kwargs["device_map"] = {
                    "shared": self.device,
                    "encoder.embed_tokens": self.device,
                    "encoder.block.0": self.device,
                    "encoder.block.1": self.device,
                    "encoder.block.2": self.device,
                    "encoder.block.3": self.device,
                    "encoder.block.4": self.device,
                    "encoder.block.5": self.device,
                    "encoder.block.6": self.device,
                    "encoder.block.7": self.device,
                    "encoder.block.8": self.device,
                    "encoder.block.9": self.device,
                    "encoder.block.10": self.device,
                    "encoder.block.11": self.device,
                    "encoder.block.12": "disk",
                    "encoder.block.13": "disk",
                    "encoder.block.14": "disk",
                    "encoder.block.15": "disk",
                    "encoder.block.16": "disk",
                    "encoder.block.17": "disk",
                    "encoder.block.18": "disk",
                    "encoder.block.19": "disk",
                    "encoder.block.20": "disk",
                    "encoder.block.21": "disk",
                    "encoder.block.22": "disk",
                    "encoder.block.23": "disk",
                    "encoder.final_layer_norm": "disk",
                    "encoder.dropout": "disk",
                }
            else:
                t5_model_kwargs["device_map"] = {"shared": self.device, "encoder": self.device}

        self.use_text_preprocessing = use_text_preprocessing
        self.hf_token = hf_token
        self.cache_dir = cache_dir or os.path.expanduser("~/.cache/IF_")
        self.dir_or_name = dir_or_name
        tokenizer_path, path = dir_or_name, dir_or_name
        if local_cache:
            cache_dir = os.path.join(self.cache_dir, dir_or_name)
            tokenizer_path, path = cache_dir, cache_dir
        elif dir_or_name in self.available_models:
            cache_dir = os.path.join(self.cache_dir, dir_or_name)
            for filename in [
                "config.json",
                "special_tokens_map.json",
                "spiece.model",
                "tokenizer_config.json",
                "pytorch_model.bin.index.json",
                "pytorch_model-00001-of-00002.bin",
                "pytorch_model-00002-of-00002.bin",
            ]:
                hf_hub_download(
                    repo_id=f"DeepFloyd/{dir_or_name}",
                    filename=filename,
                    cache_dir=cache_dir,
                    force_filename=filename,
                    token=self.hf_token,
                )
            tokenizer_path, path = cache_dir, cache_dir
        else:
            cache_dir = os.path.join(self.cache_dir, "t5-v1_1-xxl")
            for filename in [
                "config.json",
                "special_tokens_map.json",
                "spiece.model",
                "tokenizer_config.json",
            ]:
                hf_hub_download(
                    repo_id="DeepFloyd/t5-v1_1-xxl",
                    filename=filename,
                    cache_dir=cache_dir,
                    force_filename=filename,
                    token=self.hf_token,
                )
            tokenizer_path = cache_dir

        print(tokenizer_path)
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
        self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval()
        self.model_max_length = model_max_length

    def get_text_embeddings(self, texts):
        texts = [self.text_preprocessing(text) for text in texts]

        text_tokens_and_mask = self.tokenizer(
            texts,
            max_length=self.model_max_length,
            padding="max_length",
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors="pt",
        )

        text_tokens_and_mask["input_ids"] = text_tokens_and_mask["input_ids"]
        text_tokens_and_mask["attention_mask"] = text_tokens_and_mask["attention_mask"]

        with torch.no_grad():
            text_encoder_embs = self.model(
                input_ids=text_tokens_and_mask["input_ids"].to(self.device),
                attention_mask=text_tokens_and_mask["attention_mask"].to(self.device),
            )["last_hidden_state"].detach()
        return text_encoder_embs, text_tokens_and_mask["attention_mask"].to(self.device)

    def text_preprocessing(self, text):
        if self.use_text_preprocessing:
            # The exact text cleaning as was in the training stage:
            text = self.clean_caption(text)
            text = self.clean_caption(text)
            return text
        else:
            return text.lower().strip()

    @staticmethod
    def basic_clean(text):
        text = ftfy.fix_text(text)
        text = html.unescape(html.unescape(text))
        return text.strip()

    def clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip adresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(self.bad_punct_regex, r" ", caption)  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = self.basic_clean(caption)

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()


@MODELS.register_module("t5")
class T5Encoder:
    def __init__(
        self,
        from_pretrained=None,
        model_max_length=120,
        device="cuda",
        dtype=torch.float,
        local_cache=True,
        shardformer=False,
    ):
        assert from_pretrained is not None, "Please specify the path to the T5 model"

        self.t5 = T5Embedder(
            device=device,
            torch_dtype=dtype,
            local_cache=local_cache,
            cache_dir=from_pretrained,
            model_max_length=model_max_length,
        )
        self.t5.model.to(dtype=dtype)
        self.y_embedder = None

        self.model_max_length = model_max_length
        self.output_dim = self.t5.model.config.d_model

        if shardformer:
            self.shardformer_t5()

    def shardformer_t5(self):
        from colossalai.shardformer import ShardConfig, ShardFormer

        from opensora.acceleration.shardformer.policy.t5_encoder import T5EncoderPolicy
        from opensora.utils.misc import requires_grad

        shard_config = ShardConfig(
            tensor_parallel_process_group=None,
            pipeline_stage_manager=None,
            enable_tensor_parallelism=False,
            enable_fused_normalization=False,
            enable_flash_attention=False,
            enable_jit_fused=True,
            enable_sequence_parallelism=False,
            enable_sequence_overlap=False,
        )
        shard_former = ShardFormer(shard_config=shard_config)
        optim_model, _ = shard_former.optimize(self.t5.model, policy=T5EncoderPolicy())
        self.t5.model = optim_model.half()

        # ensure the weights are frozen
        requires_grad(self.t5.model, False)

    def encode(self, text):
        caption_embs, emb_masks = self.t5.get_text_embeddings(text)
        caption_embs = caption_embs[:, None]
        return dict(y=caption_embs, mask=emb_masks)

    def null(self, n):
        null_y = self.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None]
        return null_y