Spaces:
Runtime error
Runtime error
File size: 13,776 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
# Adapted from PixArt
#
# Copyright (C) 2023 PixArt-alpha/PixArt-alpha
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha
# T5: https://github.com/google-research/text-to-text-transfer-transformer
# --------------------------------------------------------
import html
import os
import re
import urllib.parse as ul
import ftfy
import torch
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, T5EncoderModel
from opensora.registry import MODELS
class T5Embedder:
available_models = ["t5-v1_1-xxl"]
bad_punct_regex = re.compile(
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
) # noqa
def __init__(
self,
device,
dir_or_name="t5-v1_1-xxl",
*,
local_cache=False,
cache_dir=None,
hf_token=None,
use_text_preprocessing=True,
t5_model_kwargs=None,
torch_dtype=None,
use_offload_folder=None,
model_max_length=120,
):
self.device = torch.device(device)
self.torch_dtype = torch_dtype or torch.bfloat16
if t5_model_kwargs is None:
t5_model_kwargs = {"low_cpu_mem_usage": True, "torch_dtype": self.torch_dtype}
if use_offload_folder is not None:
t5_model_kwargs["offload_folder"] = use_offload_folder
t5_model_kwargs["device_map"] = {
"shared": self.device,
"encoder.embed_tokens": self.device,
"encoder.block.0": self.device,
"encoder.block.1": self.device,
"encoder.block.2": self.device,
"encoder.block.3": self.device,
"encoder.block.4": self.device,
"encoder.block.5": self.device,
"encoder.block.6": self.device,
"encoder.block.7": self.device,
"encoder.block.8": self.device,
"encoder.block.9": self.device,
"encoder.block.10": self.device,
"encoder.block.11": self.device,
"encoder.block.12": "disk",
"encoder.block.13": "disk",
"encoder.block.14": "disk",
"encoder.block.15": "disk",
"encoder.block.16": "disk",
"encoder.block.17": "disk",
"encoder.block.18": "disk",
"encoder.block.19": "disk",
"encoder.block.20": "disk",
"encoder.block.21": "disk",
"encoder.block.22": "disk",
"encoder.block.23": "disk",
"encoder.final_layer_norm": "disk",
"encoder.dropout": "disk",
}
else:
t5_model_kwargs["device_map"] = {"shared": self.device, "encoder": self.device}
self.use_text_preprocessing = use_text_preprocessing
self.hf_token = hf_token
self.cache_dir = cache_dir or os.path.expanduser("~/.cache/IF_")
self.dir_or_name = dir_or_name
tokenizer_path, path = dir_or_name, dir_or_name
if local_cache:
cache_dir = os.path.join(self.cache_dir, dir_or_name)
tokenizer_path, path = cache_dir, cache_dir
elif dir_or_name in self.available_models:
cache_dir = os.path.join(self.cache_dir, dir_or_name)
for filename in [
"config.json",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json",
"pytorch_model.bin.index.json",
"pytorch_model-00001-of-00002.bin",
"pytorch_model-00002-of-00002.bin",
]:
hf_hub_download(
repo_id=f"DeepFloyd/{dir_or_name}",
filename=filename,
cache_dir=cache_dir,
force_filename=filename,
token=self.hf_token,
)
tokenizer_path, path = cache_dir, cache_dir
else:
cache_dir = os.path.join(self.cache_dir, "t5-v1_1-xxl")
for filename in [
"config.json",
"special_tokens_map.json",
"spiece.model",
"tokenizer_config.json",
]:
hf_hub_download(
repo_id="DeepFloyd/t5-v1_1-xxl",
filename=filename,
cache_dir=cache_dir,
force_filename=filename,
token=self.hf_token,
)
tokenizer_path = cache_dir
print(tokenizer_path)
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval()
self.model_max_length = model_max_length
def get_text_embeddings(self, texts):
texts = [self.text_preprocessing(text) for text in texts]
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.model_max_length,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
text_tokens_and_mask["input_ids"] = text_tokens_and_mask["input_ids"]
text_tokens_and_mask["attention_mask"] = text_tokens_and_mask["attention_mask"]
with torch.no_grad():
text_encoder_embs = self.model(
input_ids=text_tokens_and_mask["input_ids"].to(self.device),
attention_mask=text_tokens_and_mask["attention_mask"].to(self.device),
)["last_hidden_state"].detach()
return text_encoder_embs, text_tokens_and_mask["attention_mask"].to(self.device)
def text_preprocessing(self, text):
if self.use_text_preprocessing:
# The exact text cleaning as was in the training stage:
text = self.clean_caption(text)
text = self.clean_caption(text)
return text
else:
return text.lower().strip()
@staticmethod
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def clean_caption(self, caption):
caption = str(caption)
caption = ul.unquote_plus(caption)
caption = caption.strip().lower()
caption = re.sub("<person>", "person", caption)
# urls:
caption = re.sub(
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
caption = re.sub(
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa
"",
caption,
) # regex for urls
# html:
caption = BeautifulSoup(caption, features="html.parser").text
# @<nickname>
caption = re.sub(r"@[\w\d]+\b", "", caption)
# 31C0—31EF CJK Strokes
# 31F0—31FF Katakana Phonetic Extensions
# 3200—32FF Enclosed CJK Letters and Months
# 3300—33FF CJK Compatibility
# 3400—4DBF CJK Unified Ideographs Extension A
# 4DC0—4DFF Yijing Hexagram Symbols
# 4E00—9FFF CJK Unified Ideographs
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
#######################################################
# все виды тире / all types of dash --> "-"
caption = re.sub(
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa
"-",
caption,
)
# кавычки к одному стандарту
caption = re.sub(r"[`´«»“”¨]", '"', caption)
caption = re.sub(r"[‘’]", "'", caption)
# "
caption = re.sub(r""?", "", caption)
# &
caption = re.sub(r"&", "", caption)
# ip adresses:
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
# article ids:
caption = re.sub(r"\d:\d\d\s+$", "", caption)
# \n
caption = re.sub(r"\\n", " ", caption)
# "#123"
caption = re.sub(r"#\d{1,3}\b", "", caption)
# "#12345.."
caption = re.sub(r"#\d{5,}\b", "", caption)
# "123456.."
caption = re.sub(r"\b\d{6,}\b", "", caption)
# filenames:
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
#
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
# this-is-my-cute-cat / this_is_my_cute_cat
regex2 = re.compile(r"(?:\-|\_)")
if len(re.findall(regex2, caption)) > 3:
caption = re.sub(regex2, " ", caption)
caption = self.basic_clean(caption)
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
caption = re.sub(r"\s+", " ", caption)
caption.strip()
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
caption = re.sub(r"^\.\S+$", "", caption)
return caption.strip()
@MODELS.register_module("t5")
class T5Encoder:
def __init__(
self,
from_pretrained=None,
model_max_length=120,
device="cuda",
dtype=torch.float,
local_cache=True,
shardformer=False,
):
assert from_pretrained is not None, "Please specify the path to the T5 model"
self.t5 = T5Embedder(
device=device,
torch_dtype=dtype,
local_cache=local_cache,
cache_dir=from_pretrained,
model_max_length=model_max_length,
)
self.t5.model.to(dtype=dtype)
self.y_embedder = None
self.model_max_length = model_max_length
self.output_dim = self.t5.model.config.d_model
if shardformer:
self.shardformer_t5()
def shardformer_t5(self):
from colossalai.shardformer import ShardConfig, ShardFormer
from opensora.acceleration.shardformer.policy.t5_encoder import T5EncoderPolicy
from opensora.utils.misc import requires_grad
shard_config = ShardConfig(
tensor_parallel_process_group=None,
pipeline_stage_manager=None,
enable_tensor_parallelism=False,
enable_fused_normalization=False,
enable_flash_attention=False,
enable_jit_fused=True,
enable_sequence_parallelism=False,
enable_sequence_overlap=False,
)
shard_former = ShardFormer(shard_config=shard_config)
optim_model, _ = shard_former.optimize(self.t5.model, policy=T5EncoderPolicy())
self.t5.model = optim_model.half()
# ensure the weights are frozen
requires_grad(self.t5.model, False)
def encode(self, text):
caption_embs, emb_masks = self.t5.get_text_embeddings(text)
caption_embs = caption_embs[:, None]
return dict(y=caption_embs, mask=emb_masks)
def null(self, n):
null_y = self.y_embedder.y_embedding[None].repeat(n, 1, 1)[:, None]
return null_y
|