kadirnar's picture
Upload 98 files
e7d5680 verified
# Adapted from PixArt
#
# Copyright (C) 2023 PixArt-alpha/PixArt-alpha
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha
# DiT: https://github.com/facebookresearch/DiT/tree/main
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from timm.models.layers import DropPath
from timm.models.vision_transformer import Mlp
# from .builder import MODELS
from opensora.acceleration.checkpoint import auto_grad_checkpoint
from opensora.models.layers.blocks import (
Attention,
CaptionEmbedder,
MultiHeadCrossAttention,
PatchEmbed3D,
SeqParallelAttention,
SeqParallelMultiHeadCrossAttention,
SizeEmbedder,
T2IFinalLayer,
TimestepEmbedder,
approx_gelu,
get_1d_sincos_pos_embed,
get_2d_sincos_pos_embed,
get_layernorm,
t2i_modulate,
)
from opensora.registry import MODELS
from opensora.utils.ckpt_utils import load_checkpoint
class PixArtBlock(nn.Module):
"""
A PixArt block with adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
drop_path=0.0,
enable_flashattn=False,
enable_layernorm_kernel=False,
enable_sequence_parallelism=False,
):
super().__init__()
self.hidden_size = hidden_size
self.enable_flashattn = enable_flashattn
self._enable_sequence_parallelism = enable_sequence_parallelism
if enable_sequence_parallelism:
self.attn_cls = SeqParallelAttention
self.mha_cls = SeqParallelMultiHeadCrossAttention
else:
self.attn_cls = Attention
self.mha_cls = MultiHeadCrossAttention
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.attn = self.attn_cls(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
enable_flashattn=enable_flashattn,
)
self.cross_attn = self.mha_cls(hidden_size, num_heads)
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel)
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
def forward(self, x, y, t, mask=None):
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
x = x + self.cross_attn(x, y, mask)
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
@MODELS.register_module()
class PixArt(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=(1, 32, 32),
in_channels=4,
patch_size=(1, 2, 2),
hidden_size=1152,
depth=28,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
pred_sigma=True,
drop_path: float = 0.0,
no_temporal_pos_emb=False,
caption_channels=4096,
model_max_length=120,
dtype=torch.float32,
freeze=None,
space_scale=1.0,
time_scale=1.0,
enable_flashattn=False,
enable_layernorm_kernel=False,
):
super().__init__()
self.pred_sigma = pred_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if pred_sigma else in_channels
self.hidden_size = hidden_size
self.patch_size = patch_size
self.input_size = input_size
num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)])
self.num_patches = num_patches
self.num_temporal = input_size[0] // patch_size[0]
self.num_spatial = num_patches // self.num_temporal
self.base_size = int(np.sqrt(self.num_spatial))
self.num_heads = num_heads
self.dtype = dtype
self.no_temporal_pos_emb = no_temporal_pos_emb
self.depth = depth
self.mlp_ratio = mlp_ratio
self.enable_flashattn = enable_flashattn
self.enable_layernorm_kernel = enable_layernorm_kernel
self.space_scale = space_scale
self.time_scale = time_scale
self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size)
self.t_embedder = TimestepEmbedder(hidden_size)
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels,
hidden_size=hidden_size,
uncond_prob=class_dropout_prob,
act_layer=approx_gelu,
token_num=model_max_length,
)
self.register_buffer("pos_embed", self.get_spatial_pos_embed())
self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed())
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
PixArtBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
drop_path=drop_path[i],
enable_flashattn=enable_flashattn,
enable_layernorm_kernel=enable_layernorm_kernel,
)
for i in range(depth)
]
)
self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels)
self.initialize_weights()
if freeze is not None:
assert freeze in ["text"]
if freeze == "text":
self.freeze_text()
def forward(self, x, timestep, y, mask=None):
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
# embedding
x = self.x_embedder(x) # (B, N, D)
x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial)
x = x + self.pos_embed
if not self.no_temporal_pos_emb:
x = rearrange(x, "b t s d -> b s t d")
x = x + self.pos_embed_temporal
x = rearrange(x, "b s t d -> b (t s) d")
else:
x = rearrange(x, "b t s d -> b (t s) d")
t = self.t_embedder(timestep, dtype=x.dtype) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# blocks
for block in self.blocks:
x = auto_grad_checkpoint(block, x, y, t0, y_lens)
# final process
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
# cast to float32 for better accuracy
x = x.to(torch.float32)
return x
def unpatchify(self, x):
c = self.out_channels
t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)]
pt, ph, pw = self.patch_size
x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c))
x = rearrange(x, "n t h w r p q c -> n c t r h p w q")
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def get_spatial_pos_embed(self, grid_size=None):
if grid_size is None:
grid_size = self.input_size[1:]
pos_embed = get_2d_sincos_pos_embed(
self.hidden_size,
(grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]),
scale=self.space_scale,
base_size=self.base_size,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def get_temporal_pos_embed(self):
pos_embed = get_1d_sincos_pos_embed(
self.hidden_size,
self.input_size[0] // self.patch_size[0],
scale=self.time_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False)
return pos_embed
def freeze_text(self):
for n, p in self.named_parameters():
if "cross_attn" in n:
p.requires_grad = False
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
# Zero-out adaLN modulation layers in PixArt blocks:
for block in self.blocks:
nn.init.constant_(block.cross_attn.proj.weight, 0)
nn.init.constant_(block.cross_attn.proj.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.final_layer.linear.weight, 0)
nn.init.constant_(self.final_layer.linear.bias, 0)
@MODELS.register_module()
class PixArtMS(PixArt):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hidden_size % 3 == 0, "hidden_size must be divisible by 3"
self.csize_embedder = SizeEmbedder(self.hidden_size // 3)
self.ar_embedder = SizeEmbedder(self.hidden_size // 3)
def forward(self, x, timestep, y, mask=None, data_info=None):
"""
Forward pass of PixArt.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
c_size = data_info["hw"]
ar = data_info["ar"]
pos_embed = self.get_spatial_pos_embed((x.shape[-2], x.shape[-1])).to(x.dtype)
# embedding
x = self.x_embedder(x) # (B, N, D)
x = rearrange(x, "b (t s) d -> b t s d", t=self.num_temporal, s=self.num_spatial)
x = x + pos_embed.to(x.device)
if not self.no_temporal_pos_emb:
x = rearrange(x, "b t s d -> b s t d")
x = x + self.pos_embed_temporal
x = rearrange(x, "b s t d -> b (t s) d")
else:
x = rearrange(x, "b t s d -> b (t s) d")
t = self.t_embedder(timestep, dtype=x.dtype) # (N, D)
B = x.shape[0]
csize = self.csize_embedder(c_size, B)
ar = self.ar_embedder(ar, B)
t = t + torch.cat([csize, ar], dim=1)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
# blocks
for block in self.blocks:
x = block(x, y, t0, y_lens)
# final process
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
# cast to float32 for better accuracy
x = x.to(torch.float32)
return x
@MODELS.register_module("PixArt-XL/2")
def PixArt_XL_2(from_pretrained=None, **kwargs):
model = PixArt(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs)
if from_pretrained is not None:
load_checkpoint(model, from_pretrained)
return model
@MODELS.register_module("PixArtMS-XL/2")
def PixArtMS_XL_2(from_pretrained=None, **kwargs):
model = PixArtMS(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs)
if from_pretrained is not None:
load_checkpoint(model, from_pretrained)
return model