kadirnar's picture
Upload 98 files
e7d5680 verified
import torch
import torch.nn as nn
from diffusers.models import AutoencoderKL, AutoencoderKLTemporalDecoder
from einops import rearrange
from opensora.registry import MODELS
@MODELS.register_module()
class VideoAutoencoderKL(nn.Module):
def __init__(self, from_pretrained=None, micro_batch_size=None):
super().__init__()
self.module = AutoencoderKL.from_pretrained(from_pretrained)
self.out_channels = self.module.config.latent_channels
self.patch_size = (1, 8, 8)
self.micro_batch_size = micro_batch_size
def encode(self, x):
# x: (B, C, T, H, W)
B = x.shape[0]
x = rearrange(x, "B C T H W -> (B T) C H W")
if self.micro_batch_size is None:
x = self.module.encode(x).latent_dist.sample().mul_(0.18215)
else:
bs = self.micro_batch_size
x_out = []
for i in range(0, x.shape[0], bs):
x_bs = x[i : i + bs]
x_bs = self.module.encode(x_bs).latent_dist.sample().mul_(0.18215)
x_out.append(x_bs)
x = torch.cat(x_out, dim=0)
x = rearrange(x, "(B T) C H W -> B C T H W", B=B)
return x
def decode(self, x):
# x: (B, C, T, H, W)
B = x.shape[0]
x = rearrange(x, "B C T H W -> (B T) C H W")
if self.micro_batch_size is None:
x = self.module.decode(x / 0.18215).sample
else:
bs = self.micro_batch_size
x_out = []
for i in range(0, x.shape[0], bs):
x_bs = x[i : i + bs]
x_bs = self.module.decode(x_bs / 0.18215).sample
x_out.append(x_bs)
x = torch.cat(x_out, dim=0)
x = rearrange(x, "(B T) C H W -> B C T H W", B=B)
return x
def get_latent_size(self, input_size):
for i in range(3):
assert input_size[i] % self.patch_size[i] == 0, "Input size must be divisible by patch size"
input_size = [input_size[i] // self.patch_size[i] for i in range(3)]
return input_size
@MODELS.register_module()
class VideoAutoencoderKLTemporalDecoder(nn.Module):
def __init__(self, from_pretrained=None):
super().__init__()
self.module = AutoencoderKLTemporalDecoder.from_pretrained(from_pretrained)
self.out_channels = self.module.config.latent_channels
self.patch_size = (1, 8, 8)
def encode(self, x):
raise NotImplementedError
def decode(self, x):
B, _, T = x.shape[:3]
x = rearrange(x, "B C T H W -> (B T) C H W")
x = self.module.decode(x / 0.18215, num_frames=T).sample
x = rearrange(x, "(B T) C H W -> B C T H W", B=B)
return x
def get_latent_size(self, input_size):
for i in range(3):
assert input_size[i] % self.patch_size[i] == 0, "Input size must be divisible by patch size"
input_size = [input_size[i] // self.patch_size[i] for i in range(3)]
return input_size