kadirnar's picture
Upload 98 files
e7d5680 verified
from functools import partial
import torch
from opensora.registry import SCHEDULERS
from .dpm_solver import DPMS
@SCHEDULERS.register_module("dpm-solver")
class DMP_SOLVER:
def __init__(self, num_sampling_steps=None, cfg_scale=4.0):
self.num_sampling_steps = num_sampling_steps
self.cfg_scale = cfg_scale
def sample(
self,
model,
text_encoder,
z_size,
prompts,
device,
additional_args=None,
):
n = len(prompts)
z = torch.randn(n, *z_size, device=device)
model_args = text_encoder.encode(prompts)
y = model_args.pop("y")
null_y = text_encoder.null(n)
if additional_args is not None:
model_args.update(additional_args)
dpms = DPMS(
partial(forward_with_dpmsolver, model),
condition=y,
uncondition=null_y,
cfg_scale=self.cfg_scale,
model_kwargs=model_args,
)
samples = dpms.sample(z, steps=self.num_sampling_steps, order=2, skip_type="time_uniform", method="multistep")
return samples
def forward_with_dpmsolver(self, x, timestep, y, **kwargs):
"""
dpm solver donnot need variance prediction
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
model_out = self.forward(x, timestep, y, **kwargs)
return model_out.chunk(2, dim=1)[0]