import os import torch import colossalai import torch.distributed as dist from mmengine.runner import set_random_seed from opensora.datasets import save_sample from opensora.registry import MODELS, SCHEDULERS, build_module from opensora.utils.config_utils import parse_configs from opensora.utils.misc import to_torch_dtype from opensora.acceleration.parallel_states import set_sequence_parallel_group from colossalai.cluster import DistCoordinator def load_prompts(prompt_path): with open(prompt_path, "r") as f: prompts = [line.strip() for line in f.readlines()] return prompts def main(): # ====================================================== # 1. cfg and init distributed env # ====================================================== cfg = parse_configs(training=False) print(cfg) # init distributed colossalai.launch_from_torch({}) coordinator = DistCoordinator() if coordinator.world_size > 1: set_sequence_parallel_group(dist.group.WORLD) enable_sequence_parallelism = True else: enable_sequence_parallelism = False # ====================================================== # 2. runtime variables # ====================================================== torch.set_grad_enabled(False) torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True device = "cuda" if torch.cuda.is_available() else "cpu" dtype = to_torch_dtype(cfg.dtype) set_random_seed(seed=cfg.seed) prompts = load_prompts(cfg.prompt_path) # ====================================================== # 3. build model & load weights # ====================================================== # 3.1. build model input_size = (cfg.num_frames, *cfg.image_size) vae = build_module(cfg.vae, MODELS) latent_size = vae.get_latent_size(input_size) text_encoder = build_module(cfg.text_encoder, MODELS, device=device) # T5 must be fp32 model = build_module( cfg.model, MODELS, input_size=latent_size, in_channels=vae.out_channels, caption_channels=text_encoder.output_dim, model_max_length=text_encoder.model_max_length, dtype=dtype, enable_sequence_parallelism=enable_sequence_parallelism, ) text_encoder.y_embedder = model.y_embedder # hack for classifier-free guidance # 3.2. move to device & eval vae = vae.to(device, dtype).eval() model = model.to(device, dtype).eval() # 3.3. build scheduler scheduler = build_module(cfg.scheduler, SCHEDULERS) # 3.4. support for multi-resolution model_args = dict() if cfg.multi_resolution: image_size = cfg.image_size hw = torch.tensor([image_size], device=device, dtype=dtype).repeat(cfg.batch_size, 1) ar = torch.tensor([[image_size[0] / image_size[1]]], device=device, dtype=dtype).repeat(cfg.batch_size, 1) model_args["data_info"] = dict(ar=ar, hw=hw) # ====================================================== # 4. inference # ====================================================== sample_idx = 0 save_dir = cfg.save_dir os.makedirs(save_dir, exist_ok=True) for i in range(0, len(prompts), cfg.batch_size): batch_prompts = prompts[i : i + cfg.batch_size] samples = scheduler.sample( model, text_encoder, z_size=(vae.out_channels, *latent_size), prompts=batch_prompts, device=device, additional_args=model_args, ) samples = vae.decode(samples.to(dtype)) if coordinator.is_master(): for idx, sample in enumerate(samples): print(f"Prompt: {batch_prompts[idx]}") save_path = os.path.join(save_dir, f"sample_{sample_idx}") save_sample(sample, fps=cfg.fps, save_path=save_path) sample_idx += 1 if __name__ == "__main__": main()