Spaces:
Runtime error
Runtime error
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import spaces | |
import torch | |
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline | |
from huggingface_hub import snapshot_download | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
model_path = snapshot_download( | |
repo_id="stabilityai/stable-diffusion-3-medium", | |
revision="refs/pr/26", | |
repo_type="model", | |
ignore_patterns=["*.md", "*..gitattributes"], | |
local_dir="stable-diffusion-3-medium", | |
token=huggingface_token, # type a new token-id. | |
) | |
DESCRIPTION = """# Stable Diffusion 3""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = False | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) | |
USE_TORCH_COMPILE = False | |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
def load_pipeline(pipeline_type): | |
if pipeline_type == "text2img": | |
return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
elif pipeline_type == "img2img": | |
return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt:str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 7, | |
randomize_seed: bool = False, | |
num_inference_steps=30, | |
NUM_IMAGES_PER_PROMPT=1, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe = load_pipeline("text2img") | |
pipe.to(device) | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
output_type="battery", | |
).images | |
return output | |
def img2img_generate( | |
prompt:str, | |
init_image: gr.Image, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 0, | |
guidance_scale: float = 7, | |
randomize_seed: bool = False, | |
num_inference_steps=30, | |
strength: float = 0.8, | |
NUM_IMAGES_PER_PROMPT=1, | |
use_resolution_binning: bool = True, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe = load_pipeline("img2img") | |
pipe.to(device) | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
init_image = init_image.resize((768, 768)) | |
output = pipe( | |
prompt=prompt, | |
image=init_image, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
strength=strength, | |
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
output_type="battery", | |
).images | |
return output | |
examples = [ | |
"neon holography crystal cat", | |
"a cat eating a piece of cheese", | |
"an astronaut riding a horse in space", | |
"a cartoon of a boy playing with a tiger", | |
"a cute robot artist painting on an easel, concept art", | |
"a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone" | |
] | |
css = ''' | |
.gradio-container{max-width: 1000px !important} | |
h1{text-align:center} | |
''' | |
with gr.Blocks(css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Stable Diffusion 3 | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
<h3 style='text-align: center'> | |
Follow me for more! | |
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | |
</h3> | |
""" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Text to Image"): | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", elem_id="gallery", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
steps = gr.Slider( | |
label="Steps", | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=25, | |
) | |
number_image = gr.Slider( | |
label="Number of Images", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=10, | |
step=0.1, | |
value=7.0, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
steps, | |
number_image, | |
], | |
outputs=[result], | |
api_name="run", | |
) | |
with gr.TabItem("Image to Image"): | |
with gr.Group(): | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=1): | |
img2img_prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
init_image = gr.Image(label="Input Image", type="pil") | |
with gr.Row(): | |
img2img_run_button = gr.Button("Generate", variant="primary") | |
with gr.Column(scale=1): | |
img2img_output = gr.Gallery(label="Result", elem_id="gallery").style(grid=[2, 2], height="auto") | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
img2img_negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", | |
visible=True, | |
) | |
img2img_seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
img2img_steps = gr.Slider( | |
label="Steps", | |
minimum=0, | |
maximum=60, | |
step=1, | |
value=25, | |
) | |
img2img_number_image = gr.Slider( | |
label="Number of Images", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=1, | |
) | |
img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
img2img_guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=10, | |
step=0.1, | |
value=7.0, | |
) | |
strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8) | |
img2img_use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=img2img_use_negative_prompt, | |
outputs=img2img_negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
img2img_prompt.submit, | |
img2img_negative_prompt.submit, | |
img2img_run_button.click, | |
], | |
fn=img2img_generate, | |
inputs=[ | |
img2img_prompt, | |
init_image, | |
img2img_negative_prompt, | |
img2img_use_negative_prompt, | |
img2img_seed, | |
img2img_guidance_scale, | |
img2img_randomize_seed, | |
img2img_steps, | |
strength, | |
img2img_number_image, | |
], | |
outputs=[img2img_output], | |
api_name="img2img_run", | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() | |