kadirnar commited on
Commit
b047baf
1 Parent(s): 4e5249a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -18
app.py CHANGED
@@ -7,7 +7,7 @@ import numpy as np
7
  from PIL import Image
8
  import spaces
9
  import torch
10
- from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL
11
  from huggingface_hub import snapshot_download
12
 
13
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
@@ -18,7 +18,7 @@ model_path = snapshot_download(
18
  repo_type="model",
19
  ignore_patterns=["*.md", "*..gitattributes"],
20
  local_dir="stable-diffusion-3-medium",
21
- token=huggingface_token, # yeni bir token-id yazın.
22
  )
23
 
24
  DESCRIPTION = """# Stable Diffusion 3"""
@@ -34,7 +34,7 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
34
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
35
 
36
  pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
37
-
38
 
39
  def save_image(img):
40
  unique_name = str(uuid.uuid4()) + ".png"
@@ -50,7 +50,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
50
 
51
  @spaces.GPU
52
  def generate(
53
- prompt: str,
54
  negative_prompt: str = "",
55
  use_negative_prompt: bool = False,
56
  seed: int = 0,
@@ -67,10 +67,8 @@ def generate(
67
  seed = int(randomize_seed_fn(seed, randomize_seed))
68
  generator = torch.Generator().manual_seed(seed)
69
 
70
- #pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
71
-
72
  if not use_negative_prompt:
73
- negative_prompt = None # type: ignore
74
 
75
  output = pipe(
76
  prompt=prompt,
@@ -81,7 +79,46 @@ def generate(
81
  num_inference_steps=num_inference_steps,
82
  generator=generator,
83
  num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
84
- output_type="pil",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  ).images
86
 
87
  return output
@@ -109,7 +146,7 @@ with gr.Blocks(css=css) as demo:
109
  Stable Diffusion 3
110
  </h1>
111
  """
112
- )
113
  gr.HTML(
114
  """
115
  <h3 style='text-align: center'>
@@ -117,7 +154,7 @@ with gr.Blocks(css=css) as demo:
117
  <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
118
  </h3>
119
  """
120
- )
121
  with gr.Group():
122
  with gr.Row():
123
  prompt = gr.Text(
@@ -140,7 +177,7 @@ with gr.Blocks(css=css) as demo:
140
  )
141
  seed = gr.Slider(
142
  label="Seed",
143
- minimum=0,
144
  maximum=MAX_SEED,
145
  step=1,
146
  value=0,
@@ -148,14 +185,14 @@ with gr.Blocks(css=css) as demo:
148
 
149
  steps = gr.Slider(
150
  label="Steps",
151
- minimum=0,
152
  maximum=60,
153
  step=1,
154
  value=25,
155
  )
156
  number_image = gr.Slider(
157
- label="Number of Image",
158
- minimum=1,
159
  maximum=4,
160
  step=1,
161
  value=1,
@@ -164,14 +201,14 @@ with gr.Blocks(css=css) as demo:
164
  with gr.Row(visible=True):
165
  width = gr.Slider(
166
  label="Width",
167
- minimum=256,
168
  maximum=MAX_IMAGE_SIZE,
169
  step=32,
170
  value=1024,
171
  )
172
  height = gr.Slider(
173
  label="Height",
174
- minimum=256,
175
  maximum=MAX_IMAGE_SIZE,
176
  step=32,
177
  value=1024,
@@ -179,12 +216,20 @@ with gr.Blocks(css=css) as demo:
179
  with gr.Row():
180
  guidance_scale = gr.Slider(
181
  label="Guidance Scale",
182
- minimum=0.1,
183
  maximum=10,
184
  step=0.1,
185
  value=7.0,
186
  )
187
 
 
 
 
 
 
 
 
 
188
  gr.Examples(
189
  examples=examples,
190
  inputs=prompt,
@@ -223,5 +268,28 @@ with gr.Blocks(css=css) as demo:
223
  api_name="run",
224
  )
225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  if __name__ == "__main__":
227
- demo.queue().launch()
 
7
  from PIL import Image
8
  import spaces
9
  import torch
10
+ from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, AutoPipelineForImage2Image
11
  from huggingface_hub import snapshot_download
12
 
13
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
 
18
  repo_type="model",
19
  ignore_patterns=["*.md", "*..gitattributes"],
20
  local_dir="stable-diffusion-3-medium",
21
+ token=huggingface_token, # type a new token-id.
22
  )
23
 
24
  DESCRIPTION = """# Stable Diffusion 3"""
 
34
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
35
 
36
  pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
37
+ img2img_pipe = AutoPipelineForImage2Image.from_pretrained(model_path, torch_dtype=torch.float16)
38
 
39
  def save_image(img):
40
  unique_name = str(uuid.uuid4()) + ".png"
 
50
 
51
  @spaces.GPU
52
  def generate(
53
+ prompt:str,
54
  negative_prompt: str = "",
55
  use_negative_prompt: bool = False,
56
  seed: int = 0,
 
67
  seed = int(randomize_seed_fn(seed, randomize_seed))
68
  generator = torch.Generator().manual_seed(seed)
69
 
 
 
70
  if not use_negative_prompt:
71
+ negative_prompt = None # type: ignore
72
 
73
  output = pipe(
74
  prompt=prompt,
 
79
  num_inference_steps=num_inference_steps,
80
  generator=generator,
81
  num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
82
+ output_type="battery",
83
+ ).images
84
+
85
+ return output
86
+
87
+
88
+ @spaces.GPU
89
+ def img2img_generate(
90
+ prompt:str,
91
+ init_image: gr.Image,
92
+ negative_prompt: str = "",
93
+ use_negative_prompt: bool = False,
94
+ seed: int = 0,
95
+ guidance_scale: float = 7,
96
+ randomize_seed: bool = False,
97
+ num_inference_steps=30,
98
+ strength: float = 0.8,
99
+ NUM_IMAGES_PER_PROMPT=1,
100
+ use_resolution_binning: bool = True,
101
+ progress=gr.Progress(track_tqdm=True),
102
+ ):
103
+ img2img_pipe.to(device)
104
+ seed = int(randomize_seed_fn(seed, randomize_seed))
105
+ generator = torch.Generator().manual_seed(seed)
106
+
107
+ if not use_negative_prompt:
108
+ negative_prompt = None # type: ignore
109
+
110
+ init_image = init_image.resize((768, 768))
111
+
112
+ output = img2img_pipe(
113
+ prompt=prompt,
114
+ image=init_image,
115
+ negative_prompt=negative_prompt,
116
+ guidance_scale=guidance_scale,
117
+ num_inference_steps=num_inference_steps,
118
+ generator=generator,
119
+ strength=strength,
120
+ num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
121
+ output_type="battery",
122
  ).images
123
 
124
  return output
 
146
  Stable Diffusion 3
147
  </h1>
148
  """
149
+ )
150
  gr.HTML(
151
  """
152
  <h3 style='text-align: center'>
 
154
  <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
155
  </h3>
156
  """
157
+ )
158
  with gr.Group():
159
  with gr.Row():
160
  prompt = gr.Text(
 
177
  )
178
  seed = gr.Slider(
179
  label="Seed",
180
+ min=0,
181
  maximum=MAX_SEED,
182
  step=1,
183
  value=0,
 
185
 
186
  steps = gr.Slider(
187
  label="Steps",
188
+ min=0,
189
  maximum=60,
190
  step=1,
191
  value=25,
192
  )
193
  number_image = gr.Slider(
194
+ label="Number of Images",
195
+ min=1,
196
  maximum=4,
197
  step=1,
198
  value=1,
 
201
  with gr.Row(visible=True):
202
  width = gr.Slider(
203
  label="Width",
204
+ min=256,
205
  maximum=MAX_IMAGE_SIZE,
206
  step=32,
207
  value=1024,
208
  )
209
  height = gr.Slider(
210
  label="Height",
211
+ min=256,
212
  maximum=MAX_IMAGE_SIZE,
213
  step=32,
214
  value=1024,
 
216
  with gr.Row():
217
  guidance_scale = gr.Slider(
218
  label="Guidance Scale",
219
+ min=0.1,
220
  maximum=10,
221
  step=0.1,
222
  value=7.0,
223
  )
224
 
225
+ with gr.Group():
226
+ with gr.Row():
227
+ with gr.Column():
228
+ init_image = gr.Image(label="Input Image", type="pil", tool="sketch")
229
+ with gr.Column():
230
+ img2img_output = gr.Gallery(label="Output Images", show_label=False).style(grid=2)
231
+ strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8)
232
+
233
  gr.Examples(
234
  examples=examples,
235
  inputs=prompt,
 
268
  api_name="run",
269
  )
270
 
271
+ gr.on(
272
+ triggers=[
273
+ prompt.submit,
274
+ negative_prompt.submit,
275
+ run_button.click,
276
+ ],
277
+ fn=img2img_generate,
278
+ inputs=[
279
+ prompt,
280
+ init_image,
281
+ negative_prompt,
282
+ use_negative_prompt,
283
+ seed,
284
+ guidance_scale,
285
+ randomize_seed,
286
+ steps,
287
+ strength,
288
+ number_image,
289
+ ],
290
+ outputs=[img2img_output],
291
+ api_name="img2img_run",
292
+ )
293
+
294
  if __name__ == "__main__":
295
+ demo.queue().launch()