Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import numpy as np
|
|
7 |
from PIL import Image
|
8 |
import spaces
|
9 |
import torch
|
10 |
-
from diffusers import StableDiffusion3Pipeline,
|
11 |
from huggingface_hub import snapshot_download
|
12 |
|
13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
@@ -33,8 +33,11 @@ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
33 |
|
34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
def save_image(img):
|
40 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -63,6 +66,7 @@ def generate(
|
|
63 |
use_resolution_binning: bool = True,
|
64 |
progress=gr.Progress(track_tqdm=True),
|
65 |
):
|
|
|
66 |
pipe.to(device)
|
67 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
68 |
generator = torch.Generator().manual_seed(seed)
|
@@ -100,7 +104,8 @@ def img2img_generate(
|
|
100 |
use_resolution_binning: bool = True,
|
101 |
progress=gr.Progress(track_tqdm=True),
|
102 |
):
|
103 |
-
|
|
|
104 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
105 |
generator = torch.Generator().manual_seed(seed)
|
106 |
|
@@ -109,7 +114,7 @@ def img2img_generate(
|
|
109 |
|
110 |
init_image = init_image.resize((768, 768))
|
111 |
|
112 |
-
output =
|
113 |
prompt=prompt,
|
114 |
image=init_image,
|
115 |
negative_prompt=negative_prompt,
|
@@ -177,7 +182,7 @@ with gr.Blocks(css=css) as demo:
|
|
177 |
)
|
178 |
seed = gr.Slider(
|
179 |
label="Seed",
|
180 |
-
|
181 |
maximum=MAX_SEED,
|
182 |
step=1,
|
183 |
value=0,
|
@@ -185,14 +190,14 @@ with gr.Blocks(css=css) as demo:
|
|
185 |
|
186 |
steps = gr.Slider(
|
187 |
label="Steps",
|
188 |
-
|
189 |
maximum=60,
|
190 |
step=1,
|
191 |
value=25,
|
192 |
)
|
193 |
number_image = gr.Slider(
|
194 |
label="Number of Images",
|
195 |
-
|
196 |
maximum=4,
|
197 |
step=1,
|
198 |
value=1,
|
@@ -201,14 +206,14 @@ with gr.Blocks(css=css) as demo:
|
|
201 |
with gr.Row(visible=True):
|
202 |
width = gr.Slider(
|
203 |
label="Width",
|
204 |
-
|
205 |
maximum=MAX_IMAGE_SIZE,
|
206 |
step=32,
|
207 |
value=1024,
|
208 |
)
|
209 |
height = gr.Slider(
|
210 |
label="Height",
|
211 |
-
|
212 |
maximum=MAX_IMAGE_SIZE,
|
213 |
step=32,
|
214 |
value=1024,
|
@@ -216,7 +221,7 @@ with gr.Blocks(css=css) as demo:
|
|
216 |
with gr.Row():
|
217 |
guidance_scale = gr.Slider(
|
218 |
label="Guidance Scale",
|
219 |
-
|
220 |
maximum=10,
|
221 |
step=0.1,
|
222 |
value=7.0,
|
|
|
7 |
from PIL import Image
|
8 |
import spaces
|
9 |
import torch
|
10 |
+
from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline
|
11 |
from huggingface_hub import snapshot_download
|
12 |
|
13 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
33 |
|
34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
|
36 |
+
def load_pipeline(pipeline_type):
|
37 |
+
if pipeline_type == "text2img":
|
38 |
+
return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
39 |
+
elif pipeline_type == "img2img":
|
40 |
+
return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=torch.float16)
|
41 |
|
42 |
def save_image(img):
|
43 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
66 |
use_resolution_binning: bool = True,
|
67 |
progress=gr.Progress(track_tqdm=True),
|
68 |
):
|
69 |
+
pipe = load_pipeline("text2img")
|
70 |
pipe.to(device)
|
71 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
72 |
generator = torch.Generator().manual_seed(seed)
|
|
|
104 |
use_resolution_binning: bool = True,
|
105 |
progress=gr.Progress(track_tqdm=True),
|
106 |
):
|
107 |
+
pipe = load_pipeline("img2img")
|
108 |
+
pipe.to(device)
|
109 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
110 |
generator = torch.Generator().manual_seed(seed)
|
111 |
|
|
|
114 |
|
115 |
init_image = init_image.resize((768, 768))
|
116 |
|
117 |
+
output = pipe(
|
118 |
prompt=prompt,
|
119 |
image=init_image,
|
120 |
negative_prompt=negative_prompt,
|
|
|
182 |
)
|
183 |
seed = gr.Slider(
|
184 |
label="Seed",
|
185 |
+
minimum=0,
|
186 |
maximum=MAX_SEED,
|
187 |
step=1,
|
188 |
value=0,
|
|
|
190 |
|
191 |
steps = gr.Slider(
|
192 |
label="Steps",
|
193 |
+
minimum=0,
|
194 |
maximum=60,
|
195 |
step=1,
|
196 |
value=25,
|
197 |
)
|
198 |
number_image = gr.Slider(
|
199 |
label="Number of Images",
|
200 |
+
minimum=1,
|
201 |
maximum=4,
|
202 |
step=1,
|
203 |
value=1,
|
|
|
206 |
with gr.Row(visible=True):
|
207 |
width = gr.Slider(
|
208 |
label="Width",
|
209 |
+
minimum=256,
|
210 |
maximum=MAX_IMAGE_SIZE,
|
211 |
step=32,
|
212 |
value=1024,
|
213 |
)
|
214 |
height = gr.Slider(
|
215 |
label="Height",
|
216 |
+
minimum=256,
|
217 |
maximum=MAX_IMAGE_SIZE,
|
218 |
step=32,
|
219 |
value=1024,
|
|
|
221 |
with gr.Row():
|
222 |
guidance_scale = gr.Slider(
|
223 |
label="Guidance Scale",
|
224 |
+
minimum=0.1,
|
225 |
maximum=10,
|
226 |
step=0.1,
|
227 |
value=7.0,
|